These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32659008)

  • 41. In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens.
    Finka A; Schaefer DG; Saidi Y; Goloubinoff P; Zrÿd JP
    New Phytol; 2007; 174(1):63-76. PubMed ID: 17335498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle.
    Rawat A; Brejšková L; Hála M; Cvrčková F; Žárský V
    New Phytol; 2017 Oct; 216(2):438-454. PubMed ID: 28397275
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overexpression of RelA/SpoT homologs, PpRSH2a and PpRSH2b, induces the growth suppression of the moss Physcomitrella patens.
    Sato M; Takahashi T; Ochi K; Matsuura H; Nabeta K; Takahashi K
    Biosci Biotechnol Biochem; 2015; 79(1):36-44. PubMed ID: 25228236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Experiments on the analysis of the development of the protonema of mosses : IV. The endogenous factor H and its role in the morphogenesis of Funaria hygrometrica].
    Klein B
    Planta; 1967 Mar; 73(1):12-27. PubMed ID: 24554365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens.
    Schallenberg-Rüdinger M; Oldenkott B; Hiss M; Trinh PL; Knoop V; Rensing SA
    Plant Cell Physiol; 2017 Mar; 58(3):496-507. PubMed ID: 28394399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens.
    Perroud PF; Demko V; Johansen W; Wilson RC; Olsen OA; Quatrano RS
    New Phytol; 2014 Aug; 203(3):794-804. PubMed ID: 24844771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The moss Physcomitrella patens: a novel model system for plant development and genomic studies.
    Cove DJ; Perroud PF; Charron AJ; McDaniel SF; Khandelwal A; Quatrano RS
    Cold Spring Harb Protoc; 2009 Feb; 2009(2):pdb.emo115. PubMed ID: 20147063
    [No Abstract]   [Full Text] [Related]  

  • 49. Optical and electron-microscopic studies of the Funaria hygrometrica protonema after cultivation for 96 days in space.
    Kordyum EL; Nedukha EM; Stynik KM; Mashinsky AL
    Adv Space Res; 1981; 1(14):159-62. PubMed ID: 11541705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens.
    Ashton NW; Schulze A; Hall P; Bandurski RS
    Planta; 1985; 164():142-4. PubMed ID: 11540856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytophthora infestans RXLR effector AVR1 disturbs the growth of Physcomitrium patens without affecting Sec5 localization.
    Overdijk EJR; Putker V; Smits J; Tang H; Bouwmeester K; Govers F; Ketelaar T
    PLoS One; 2021; 16(4):e0249637. PubMed ID: 33831039
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional Characterization of Class I Trehalose Biosynthesis Genes in
    Phan TLCHB; Delorge I; Avonce N; Van Dijck P
    Front Plant Sci; 2019; 10():1694. PubMed ID: 32038675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens.
    Bierfreund NM; Tintelnot S; Reski R; Decker EL
    J Plant Physiol; 2004 Jul; 161(7):823-35. PubMed ID: 15310072
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Three ancient hormonal cues co-ordinate shoot branching in a moss.
    Coudert Y; Palubicki W; Ljung K; Novak O; Leyser O; Harrison CJ
    Elife; 2015 Mar; 4():. PubMed ID: 25806686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Actin as deathly switch? How auxin can suppress cell-death related defence.
    Chang X; Riemann M; Liu Q; Nick P
    PLoS One; 2015; 10(5):e0125498. PubMed ID: 25933033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens: its conserved protein interactions in land plants.
    Parihar V; Arya D; Walia A; Tyagi V; Dangwal M; Verma V; Khurana R; Boora N; Kapoor S; Kapoor M
    Plant J; 2019 Jan; 97(2):221-239. PubMed ID: 30537172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Illuminating the role of the calyptra in sporophyte development.
    Budke JM
    Curr Opin Plant Biol; 2024 Oct; 81():102565. PubMed ID: 38824880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-Wide Analysis of the MYB Transcription Factor Superfamily in
    Pu X; Yang L; Liu L; Dong X; Chen S; Chen Z; Liu G; Jia Y; Yuan W; Liu L
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024128
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens.
    Saavedra L; Catarino R; Heinz T; Heilmann I; Bezanilla M; Malhó R
    Plant Physiol; 2015 Dec; 169(4):2572-86. PubMed ID: 26463087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control.
    Landberg K; Šimura J; Ljung K; Sundberg E; Thelander M
    New Phytol; 2021 Jan; 229(2):845-860. PubMed ID: 32901452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.