These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32659200)

  • 1. Comparison of nine heart rate-based models to predict work metabolism of Forest workers.
    Arab S; Imbeau D; Dubeau D; Dubé PA; Auger I
    Ergonomics; 2020 Nov; 63(11):1394-1413. PubMed ID: 32659200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Worker heat stress prevention and work metabolism estimation: comparing two assessment methods of the heart rate thermal component.
    Dubé PA; Imbeau D; Dubeau D; Auger I
    Ergonomics; 2019 Aug; 62(8):1066-1085. PubMed ID: 30961471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of work metabolism from heart rate measurements in forest work: some practical methodological issues.
    Dubé PA; Imbeau D; Dubeau D; Auger I; Leone M
    Ergonomics; 2015; 58(12):2040-56. PubMed ID: 26046487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.
    Dubé PA; Imbeau D; Dubeau D; Lebel L; Kolus A
    Appl Ergon; 2016 May; 54():148-57. PubMed ID: 26851474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of physiological workload assessment methods using heart rate and accelerometry for a smart wearable system.
    Yang L; Lu K; Forsman M; Lindecrantz K; Seoane F; Ekblom Ö; Eklund J
    Ergonomics; 2019 May; 62(5):694-705. PubMed ID: 30806164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new heart rate variability-based method for the estimation of oxygen consumption without individual laboratory calibration: application example on postal workers.
    Smolander J; Juuti T; Kinnunen ML; Laine K; Louhevaara V; Männikkö K; Rusko H
    Appl Ergon; 2008 May; 39(3):325-31. PubMed ID: 17950689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen consumption during fire suppression: error of heart rate estimation.
    Sothmann M; Saupe K; Raven P; Pawelczyk J; Davis P; Dotson C; Landy F; Siliunas M
    Ergonomics; 1991 Dec; 34(12):1469-74. PubMed ID: 1800111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.
    Kolus A; Dubé PA; Imbeau D; Labib R; Dubeau D
    Appl Ergon; 2014 Nov; 45(6):1475-83. PubMed ID: 24793823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel energy expenditure prediction equation for intermittent physical activity.
    Dugas LR; van der Merwe L; Odendaal H; Noakes TD; Lambert EV
    Med Sci Sports Exerc; 2005 Dec; 37(12):2154-61. PubMed ID: 16331144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic capacity of forestry workers and physical demands of forestry operations.
    Kurumatani N; Yamaguchi B; Dejima M; Enomoto Y; Moriyama T
    Eur J Appl Physiol Occup Physiol; 1992; 64(6):546-51. PubMed ID: 1618194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of heart-rate based measurements of oxygen consumption during work with light and moderate physical activity.
    Bernmark E; Forsman M; Pernold G; Wiktorin C
    Work; 2012; 41 Suppl 1():5475-6. PubMed ID: 22317589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HR index--a simple method for the prediction of oxygen uptake.
    Wicks JR; Oldridge NB; Nielsen LK; Vickers CE
    Med Sci Sports Exerc; 2011 Oct; 43(10):2005-12. PubMed ID: 21364476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of free-living energy expenditure by the doubly labeled water method and heart-rate monitoring.
    Livingstone MB; Prentice AM; Coward WA; Ceesay SM; Strain JJ; McKenna PG; Nevin GB; Barker ME; Hickey RJ
    Am J Clin Nutr; 1990 Jul; 52(1):59-65. PubMed ID: 2193501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure by heart rate in children: an evaluation of calibration techniques.
    Livingstone MB; Robson PJ; Totton M
    Med Sci Sports Exerc; 2000 Aug; 32(8):1513-9. PubMed ID: 10949020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart rate monitoring as a reliable tool for assessing energy expenditure in obese individuals.
    Shargal E; Shtrik R; Zigel L; Schwartz B; Pilz-Burstein R
    J Sports Med Phys Fitness; 2011 Sep; 51(3):473-9. PubMed ID: 21904287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of energy expenditure in a work environment: comparison of accelerometry and oxygen consumption/heart rate regression.
    Bouchard DR; Trudeau F
    Ergonomics; 2008 May; 51(5):663-70. PubMed ID: 18432444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.
    Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C
    J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.
    Kolus A; Imbeau D; Dubé PA; Dubeau D
    Appl Ergon; 2016 May; 54():158-68. PubMed ID: 26851475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of body mass on physiological indicators in the performance of forestry workers.
    Martinić I; Segotić K; Risović S; Goglia V
    Coll Antropol; 2006 Jun; 30(2):305-11. PubMed ID: 16848144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.