These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32659354)

  • 61. Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design.
    Iivanainen J; Mäkinen AJ; Zetter R; Stenroos M; Ilmoniemi RJ; Parkkonen L
    Neuroimage; 2021 Dec; 245():118747. PubMed ID: 34852277
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Can EEG and MEG detect signals from the human cerebellum?
    Andersen LM; Jerbi K; Dalal SS
    Neuroimage; 2020 Jul; 215():116817. PubMed ID: 32278092
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Artifact and head movement compensation in MEG.
    Medvedovsky M; Taulu S; Bikmullina R; Paetau R
    Neurol Neurophysiol Neurosci; 2007 Oct; ():4. PubMed ID: 18066426
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Localization of abnormal discharges causing insular epilepsy by magnetoencephalography.
    Park HM; Nakasato N; Tominaga T
    Tohoku J Exp Med; 2012 Mar; 226(3):207-11. PubMed ID: 22353789
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Source cancellation profiles of electroencephalography and magnetoencephalography.
    Irimia A; Van Horn JD; Halgren E
    Neuroimage; 2012 Feb; 59(3):2464-74. PubMed ID: 21959078
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimal design of on-scalp electromagnetic sensor arrays for brain source localisation.
    Beltrachini L; von Ellenrieder N; Eichardt R; Haueisen J
    Hum Brain Mapp; 2021 Oct; 42(15):4869-4879. PubMed ID: 34245061
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vibrotactile piezoelectric stimulation system with precise and versatile timing control for somatosensory research.
    Sun L; Okada Y
    J Neurosci Methods; 2019 Apr; 317():29-36. PubMed ID: 30738105
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.
    Fedele T; Scheer HJ; Burghoff M; Curio G; Körber R
    Physiol Meas; 2015 Feb; 36(2):357-68. PubMed ID: 25612926
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparing Features for Classification of MEG Responses to Motor Imagery.
    Halme HL; Parkkonen L
    PLoS One; 2016; 11(12):e0168766. PubMed ID: 27992574
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of beamformer implementations for MEG source localization.
    Jaiswal A; Nenonen J; Stenroos M; Gramfort A; Dalal SS; Westner BU; Litvak V; Mosher JC; Schoffelen JM; Witton C; Oostenveld R; Parkkonen L
    Neuroimage; 2020 Aug; 216():116797. PubMed ID: 32278091
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Neural Basis of Early Somatosensory Change Detection: A Magnetoencephalography Study.
    Naeije G; Vaulet T; Wens V; Marty B; Goldman S; De Tiège X
    Brain Topogr; 2018 Mar; 31(2):242-256. PubMed ID: 28913778
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Brain generators of laser-evoked potentials: from dipoles to functional significance.
    Garcia-Larrea L; Frot M; Valeriani M
    Neurophysiol Clin; 2003 Dec; 33(6):279-92. PubMed ID: 14678842
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Beyond the N1: A review of late somatosensory evoked responses in human infants.
    Saby JN; Meltzoff AN; Marshall PJ
    Int J Psychophysiol; 2016 Dec; 110():146-152. PubMed ID: 27553531
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Anatomical constraints on source models for high-resolution EEG and MEG derived from MRI.
    Srinivasan R
    Technol Cancer Res Treat; 2006 Aug; 5(4):389-99. PubMed ID: 16866569
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence.
    Winter WR; Nunez PL; Ding J; Srinivasan R
    Stat Med; 2007 Sep; 26(21):3946-57. PubMed ID: 17607723
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optically pumped magnetoencephalography in epilepsy.
    Vivekananda U; Mellor S; Tierney TM; Holmes N; Boto E; Leggett J; Roberts G; Hill RM; Litvak V; Brookes MJ; Bowtell R; Barnes GR; Walker MC
    Ann Clin Transl Neurol; 2020 Mar; 7(3):397-401. PubMed ID: 32112610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of magnetoencephalographic spikes with and without concurrent electroencephalographic spikes in extratemporal epilepsy.
    Park HM; Nakasato N; Iwasaki M; Shamoto H; Tominaga T; Yoshimoto T
    Tohoku J Exp Med; 2004 Jul; 203(3):165-74. PubMed ID: 15240925
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High resolution spatio-temporal EEG-MEG analysis of rolandic spikes.
    Huiskamp G; van Der Meij W; van Huffelen A; van Nieuwenhuizen O
    J Clin Neurophysiol; 2004; 21(2):84-95. PubMed ID: 15284598
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydraulic driven fast and precise nonmagnetic tactile stimulator for neurophysiological and MEG measurements.
    Broser PJ; Braun C
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2852-8. PubMed ID: 22893368
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Magnetoencephalographic spikes not detected by conventional electroencephalography.
    Rodin E; Funke M; Berg P; Matsuo F
    Clin Neurophysiol; 2004 Sep; 115(9):2041-7. PubMed ID: 15294206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.