These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32659402)

  • 1. Organosolv lignins as new stabilizers for cellulose nitrate: Thermal behavior and stability assessment.
    Fodil Cherif M; Trache D; Benaliouche F; Tarchoun AF; Chelouche S; Mezroua A
    Int J Biol Macromol; 2020 Dec; 164():794-807. PubMed ID: 32659402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis.
    Martín-Sampedro R; Santos JI; Eugenio ME; Wicklein B; Jiménez-López L; Ibarra D
    Int J Biol Macromol; 2019 Nov; 140():311-322. PubMed ID: 31408656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose.
    Hassan MA
    J Hazard Mater; 2001 Nov; 88(1):33-49. PubMed ID: 11606239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical characteristics of organosolv lignins from different lignocellulosic agricultural wastes.
    Pongchaiphol S; Suriyachai N; Hararak B; Raita M; Laosiripojana N; Champreda V
    Int J Biol Macromol; 2022 Sep; 216():710-727. PubMed ID: 35803411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxymethylation and oxidation of Organosolv lignins and utilization of the products.
    Gonçalves AR; Benar P
    Bioresour Technol; 2001 Sep; 79(2):103-11. PubMed ID: 11480918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate.
    Tarchoun AF; Trache D; Abdelaziz A; Harrat A; Boukecha WO; Hamouche MA; Boukeciat H; Dourari M
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coconut coir pith lignin: A physicochemical and thermal characterization.
    Asoka Panamgama L; Peramune PRUSK
    Int J Biol Macromol; 2018 Jul; 113():1149-1157. PubMed ID: 29518442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalently bound humin-lignin hybrids as important novel substructures in organosolv spruce lignins.
    Thoresen PP; Lange H; Rova U; Christakopoulos P; Matsakas L
    Int J Biol Macromol; 2023 Apr; 233():123471. PubMed ID: 36736515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer properties of softwood organosolv lignins produced in two different reactor systems.
    Joseph P; Tanase-Opedal M; Moe ST
    Biopolymers; 2023 Dec; 114(12):e23566. PubMed ID: 37795978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation characteristics of lignin from Eucalyptus camaldulensis lignin celluloses for biomedical cellulose.
    Peng W; Wang L; Zhang M; Lin Z
    Pak J Pharm Sci; 2014 May; 27(3 Suppl):723-8. PubMed ID: 24816703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis.
    Martín-Sampedro R; Santos JI; Fillat Ú; Wicklein B; Eugenio ME; Ibarra D
    Int J Biol Macromol; 2019 Apr; 126():18-29. PubMed ID: 30572057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural variation of eucalyptus lignin in a combination of hydrothermal and alkali treatments.
    Sun SN; Li HY; Cao XF; Xu F; Sun RC
    Bioresour Technol; 2015 Jan; 176():296-9. PubMed ID: 25435069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of new poly 2-acryloyl-N,N'-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N,N'-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose.
    Shehata AB; Hassan MA; Nour MA
    J Hazard Mater; 2003 Aug; 102(2-3):121-36. PubMed ID: 12972232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal Synthesis of Hematite Nanoparticles Decorated on Carbon Mesospheres and Their Synergetic Action on the Thermal Decomposition of Nitrocellulose.
    Benhammada A; Trache D; Kesraoui M; Chelouche S
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural elucidation of lignin polymers of Eucalyptus chips during organosolv pretreatment and extended delignification.
    Wen JL; Sun SL; Yuan TQ; Xu F; Sun RC
    J Agric Food Chem; 2013 Nov; 61(46):11067-75. PubMed ID: 24168231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nitrate content on thermal decomposition of nitrocellulose.
    Pourmortazavi SM; Hosseini SG; Rahimi-Nasrabadi M; Hajimirsadeghi SS; Momenian H
    J Hazard Mater; 2009 Mar; 162(2-3):1141-4. PubMed ID: 18650008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability studies of double-base propellants with centralite and malonanilide stabilizers using MO calculations in comparison to thermal studies.
    Zayed MA; Mohamed AA; Hassan MA
    J Hazard Mater; 2010 Jul; 179(1-3):453-61. PubMed ID: 20362395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood.
    Wang S; Ru B; Lin H; Sun W; Luo Z
    Bioresour Technol; 2015 Apr; 182():120-127. PubMed ID: 25686545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of organosolv and hydrotropic pretreatments of eucalyptus for enhancing enzymatic saccharification.
    Mou H; Wu S
    Bioresour Technol; 2016 Nov; 220():637-640. PubMed ID: 27590575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compatibility and thermal decomposition mechanism of nitrocellulose/Cr
    Guo Y; Zhao N; Zhang T; Gong H; Ma H; An T; Zhao F; Hu R
    RSC Adv; 2019 Jan; 9(7):3927-3937. PubMed ID: 35518090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.