BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32659424)

  • 1. Hydrogen production from macroalgae by simultaneous dark fermentation and microbial electrolysis cell.
    Nguyen PKT; Das G; Kim J; Yoon HH
    Bioresour Technol; 2020 Nov; 315():123795. PubMed ID: 32659424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential dark fermentation and microbial electrolysis cells for hydrogen production: Volatile fatty acids influence and energy considerations.
    Magdalena JA; Pérez-Bernal MF; Bernet N; Trably E
    Bioresour Technol; 2023 Apr; 374():128803. PubMed ID: 36858124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell.
    Gebreslassie TR; Nguyen PKT; Yoon HH; Kim J
    Bioresour Technol; 2021 Sep; 336():125269. PubMed ID: 34049167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced hydrogen production from water hyacinth by a combination of ultrasonic-assisted alkaline pretreatment, dark fermentation, and microbial electrolysis cell.
    Thu Ha Tran T; Khanh Thinh Nguyen P
    Bioresour Technol; 2022 Aug; 357():127340. PubMed ID: 35598775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of dark fermentation of macroalgae for hydrogen and volatile fatty acids production.
    Kim B; Jeong J; Kim J; Hee Yoon H; Khanh Thinh Nguyen P; Kim J
    Bioresour Technol; 2022 Jun; 354():127193. PubMed ID: 35452825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons.
    Bakonyi P; Kumar G; Koók L; Tóth G; Rózsenberszki T; Bélafi-Bakó K; Nemestóthy N
    Bioresour Technol; 2018 Mar; 251():381-389. PubMed ID: 29295757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell.
    Zhang J; Chang H; Li X; Jiang B; Wei T; Sun X; Liang D
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89727-89737. PubMed ID: 35857167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Technol; 2015 Nov; 49(22):13667-75. PubMed ID: 26503792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production.
    Rivera I; Bakonyi P; Cuautle-Marín MA; Buitrón G
    Chemosphere; 2017 May; 174():253-259. PubMed ID: 28171841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.
    Lee HS; Xin W; Katakojwala R; Venkata Mohan S; Tabish NMD
    Bioresour Technol; 2022 Nov; 363():127934. PubMed ID: 36100184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.
    Dhar BR; Elbeshbishy E; Hafez H; Lee HS
    Bioresour Technol; 2015 Dec; 198():223-30. PubMed ID: 26398665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.
    Lu L; Xing D; Liu B; Ren N
    Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.
    Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP
    Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
    Call D; Logan BE
    Environ Sci Technol; 2008 May; 42(9):3401-6. PubMed ID: 18522125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].
    Li J; Zhang W; Yin F; Xu R; Chen Y
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure.
    Huang J; Feng H; Huang L; Ying X; Shen D; Chen T; Shen X; Zhou Y; Xu Y
    Waste Manag; 2020 Feb; 103():61-66. PubMed ID: 31865036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.