These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32659424)

  • 61. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.
    Villano M; Scardala S; Aulenta F; Majone M
    Bioresour Technol; 2013 Feb; 130():366-71. PubMed ID: 23313682
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol.
    Xia A; Jacob A; Herrmann C; Tabassum MR; Murphy JD
    Bioresour Technol; 2015 Oct; 193():488-97. PubMed ID: 26163759
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells.
    Mahmoud M; Torres CI; Rittmann BE
    Environ Sci Technol; 2017 Nov; 51(22):13461-13470. PubMed ID: 29039192
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates.
    Montpart N; Rago L; Baeza JA; Guisasola A
    Water Res; 2015 Jan; 68():601-15. PubMed ID: 25462766
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Feasibility of quaternary ammonium and 1,4-diazabicyclo[2.2.2]octane-functionalized anion-exchange membranes for biohydrogen production in microbial electrolysis cells.
    Cardeña R; Žitka J; Koók L; Bakonyi P; Pavlovec L; Otmar M; Nemestóthy N; Buitrón G
    Bioelectrochemistry; 2020 Jun; 133():107479. PubMed ID: 32086178
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell.
    Pant D; Arslan D; Van Bogaert G; Gallego YA; De Wever H; Diels L; Vanbroekhoven K
    Environ Technol; 2013; 34(13-16):1935-45. PubMed ID: 24350447
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hydrogen production: two stage processes for waste degradation.
    Gómez X; Fernández C; Fierro J; Sánchez ME; Escapa A; Morán A
    Bioresour Technol; 2011 Sep; 102(18):8621-7. PubMed ID: 21482462
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone.
    Cheng SS; Chang SM; Chen ST
    Water Sci Technol; 2002; 46(4-5):209-14. PubMed ID: 12361012
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.
    Bonk F; Bastidas-Oyanedel JR; Schmidt JE
    Waste Manag; 2015 Jun; 40():82-91. PubMed ID: 25840736
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation.
    Liu W; He Z; Yang C; Zhou A; Guo Z; Liang B; Varrone C; Wang AJ
    Biotechnol Biofuels; 2016; 9():83. PubMed ID: 27042212
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35981-35989. PubMed ID: 29558790
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Substrate degradation, biodiesel production, and microbial community of two electro-fermentation systems on treating oleaginous microalgae Nannochloropsis sp.
    Shi Y; Huang K; Pan X; Liu G; Cai Y; Zaidi AA; Zhang K
    Bioresour Technol; 2021 Jun; 329():124932. PubMed ID: 33713901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.
    Lee HS; Torres CI; Parameswaran P; Rittmann BE
    Environ Sci Technol; 2009 Oct; 43(20):7971-6. PubMed ID: 19921922
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.
    Sugnaux M; Happe M; Cachelin CP; Gloriod O; Huguenin G; Blatter M; Fischer F
    Bioresour Technol; 2016 Dec; 221():61-69. PubMed ID: 27639225
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mo
    Lu S; Lu B; Tan G; Moe W; Xu W; Wang Y; Xing D; Zhu X
    Biosens Bioelectron; 2020 Nov; 167():112491. PubMed ID: 32798808
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells.
    Liu J; Hou H; Chen X; Bazan GC; Kashima H; Logan BE
    Bioelectrochemistry; 2015 Dec; 106(Pt B):379-82. PubMed ID: 26265121
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC).
    Liu W; Wang A; Sun D; Ren N; Zhang Y; Zhou J
    J Biotechnol; 2012 Feb; 157(4):628-32. PubMed ID: 21939699
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.