These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32660088)

  • 1. Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography.
    Sadrawi M; Lin YT; Lin CH; Mathunjwa B; Fan SZ; Abbod MF; Shieh JS
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation.
    Harfiya LN; Chang CC; Li YH
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks.
    Wang W; Mohseni P; Kilgore K; Najafizadeh L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1031-1034. PubMed ID: 34891464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals.
    Mahmud S; Ibtehaz N; Khandakar A; Tahir AM; Rahman T; Islam KR; Hossain MS; Rahman MS; Musharavati F; Ayari MA; Islam MT; Chowdhury MEH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder.
    Sadrawi M; Lin YT; Lin CH; Mathunjwa B; Hsin HT; Fan SZ; Abbod MF; Shieh JS
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism.
    Aguirre N; Grall-Maës E; Cymberknop LJ; Armentano RL
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features.
    Jeong DU; Lim KM
    Sci Rep; 2021 Jun; 11(1):13539. PubMed ID: 34188132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature Learning for Blood Pressure Estimation from Photoplethysmography.
    Aguet C; Zaen JV; Jorge J; Proenca M; Bonnier G; Frossard P; Lemay M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():463-466. PubMed ID: 34891333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Blood Pressure Estimation From Non-Invasive Measurements Using Support Vector Regression.
    Rastegar A S; GholamHosseini A H; Lowe A A; Linden B M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1487-1490. PubMed ID: 34891566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A clinical set-up for noninvasive blood pressure monitoring using two photoplethysmograms and based on convolutional neural networks.
    Esmaelpoor J; Sanat ZM; Moradi MH
    Biomed Tech (Berl); 2021 Aug; 66(4):375-385. PubMed ID: 33826809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Systolic Blood Pressure Using Convolutional Neural Networks.
    Rastegar S; Gholamhosseini H; Lowe A; Mehdipour F; Lindén M
    Stud Health Technol Inform; 2019; 261():143-149. PubMed ID: 31156106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification.
    Liang Y; Chen Z; Ward R; Elgendi M
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30373211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoplethysmography Based Blood Pressure Monitoring Using the Senbiosys Ring.
    Haddad S; Boukhayma A; Di Pietrantonio G; Barison A; de Preux G; Caizzone A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1609-1612. PubMed ID: 34891593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous PPG-Based Blood Pressure Monitoring Using Multi-Linear Regression.
    Haddad S; Boukhayma A; Caizzone A
    IEEE J Biomed Health Inform; 2022 May; 26(5):2096-2105. PubMed ID: 34784288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.