BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 32660111)

  • 1. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.
    Shen T; Tan Q; Dai Z; Padture NP; Pacifici D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO
    Rubtsov S; Musin A; Danchuk V; Shatalov M; Prasad N; Zinigrad M; Yadgarov L
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells.
    Cai B; Peng Y; Cheng YB; Gu M
    Opt Express; 2015 Nov; 23(24):A1700-6. PubMed ID: 26698816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanoparticles as Light-Harvesting Enhancers in Perovskite Solar Cells: A User's Guide.
    Carretero-Palacios S; Jiménez-Solano A; Míguez H
    ACS Energy Lett; 2016 Jul; 1(1):323-331. PubMed ID: 28066822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the path to >30% power conversion efficiency in perovskite solar cells with plasmonic nanoparticles.
    Mashrafi M; Anik MHK; Israt MF; Habib A; Islam S
    RSC Adv; 2023 Jun; 13(28):19447-19454. PubMed ID: 37383688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metasurface-assisted broadband optical absorption in ultrathin perovskite films.
    He J; Zhou Y; Li CY; Xiong B; Jing H; Peng R; Wang M
    Opt Express; 2021 Jun; 29(12):19170-19182. PubMed ID: 34154158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of light absorption enhancement in perovskite solar cells by plasmonic nanoparticles.
    Zheng D; Pauporté T; Schwob C; Coolen L
    Exploration (Beijing); 2024 Feb; 4(1):20220146. PubMed ID: 38854487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tapered Coaxial Arrays for Photon- and Plasmon-Enhanced Light Harvesting in Perovskite Solar Cells: A Theoretical Investigation Using the Finite Element Method.
    Chen M; Xue T; Tian Q; Xu Z; Liu SF
    Chempluschem; 2021 May; 86(6):858-864. PubMed ID: 34110717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells.
    Yao K; Zhong H; Liu Z; Xiong M; Leng S; Zhang J; Xu YX; Wang W; Zhou L; Huang H; Jen AK
    ACS Nano; 2019 May; 13(5):5397-5409. PubMed ID: 31017763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locally placed nanoscale gold islands film within a TiO
    Kim T; Kumaresan Y; Cho SJ; Lee CL; Lee H; Jung GY
    Nano Converg; 2016; 3(1):33. PubMed ID: 28191443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.