These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 32660165)

  • 1. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review.
    Jorgenson KW; Phillips SM; Hornberger TA
    Cells; 2020 Jul; 9(7):. PubMed ID: 32660165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle.
    Sayed RKA; Hibbert JE; Jorgenson KW; Hornberger TA
    Cells; 2023 Dec; 12(24):. PubMed ID: 38132132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel imaging method (FIM-ID) reveals that myofibrillogenesis plays a major role in the mechanically induced growth of skeletal muscle.
    Jorgenson KW; Hibbert JE; Sayed RKA; Lange AN; Godwin JS; Mesquita PHC; Ruple BA; McIntosh MC; Kavazis AN; Roberts MD; Hornberger TA
    Elife; 2024 Mar; 12():. PubMed ID: 38466320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational approach to quantitatively define sarcomere dimensions and arrangement in skeletal muscle.
    Cisterna B; Malatesta M; Zancanaro C; Boschi F
    Comput Methods Programs Biomed; 2021 Nov; 211():106437. PubMed ID: 34624632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men.
    Harber MP; Konopka AR; Undem MK; Hinkley JM; Minchev K; Kaminsky LA; Trappe TA; Trappe S
    J Appl Physiol (1985); 2012 Nov; 113(9):1495-504. PubMed ID: 22984247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy.
    Adams GR; Bamman MM
    Compr Physiol; 2012 Oct; 2(4):2829-70. PubMed ID: 23720267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading.
    Adams GR
    Exerc Sport Sci Rev; 1998; 26():31-60. PubMed ID: 9696984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pelvic muscles' mechanical response to strains in theĀ absence and presence of pregnancy-induced adaptations in a rat model.
    Catanzarite T; Bremner S; Barlow CL; Bou-Malham L; O'Connor S; Alperin M
    Am J Obstet Gynecol; 2018 May; 218(5):512.e1-512.e9. PubMed ID: 29432755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of rat gastrocnemius muscles to 2 weeks of centrifugation: myofibers and extracellular matrix.
    Stauber WT; Miller GR; Grimmett JG
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A45-8. PubMed ID: 10776452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myosin: Formation and maintenance of thick filaments.
    Ojima K
    Anim Sci J; 2019 Jul; 90(7):801-807. PubMed ID: 31134719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducing hypertrophic effects of type I skeletal muscle fibers: A hypothetical role of time under load in resistance training aimed at muscular hypertrophy.
    Grgic J; Homolak J; Mikulic P; Botella J; Schoenfeld BJ
    Med Hypotheses; 2018 Mar; 112():40-42. PubMed ID: 29447936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement.
    Haun CT; Vann CG; Roberts BM; Vigotsky AD; Schoenfeld BJ; Roberts MD
    Front Physiol; 2019; 10():247. PubMed ID: 30930796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise.
    Wackerhage H; Schoenfeld BJ; Hamilton DL; Lehti M; Hulmi JJ
    J Appl Physiol (1985); 2019 Jan; 126(1):30-43. PubMed ID: 30335577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle injury versus adaptation with aging: novel insights on perplexing paradigms.
    Baker BA; Cutlip RG
    Exerc Sport Sci Rev; 2010 Jan; 38(1):10-6. PubMed ID: 20016294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscular adaptations to resistance exercise in the elderly.
    Narici MV; Reeves ND; Morse CI; Maganaris CN
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):161-4. PubMed ID: 15615118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling performance and skeletal muscle adaptations with exponential growth functions during resistance training.
    Philippe AG; Borrani F; Sanchez AM; Py G; Candau R
    J Sports Sci; 2019 Feb; 37(3):254-261. PubMed ID: 29972090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocellular Adaptations to Low-Load Blood Flow Restricted Resistance Training.
    Vissing K; Groennebaek T; Wernbom M; Aagaard P; Raastad T
    Exerc Sport Sci Rev; 2020 Oct; 48(4):180-187. PubMed ID: 32658044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in muscle mass with mechanical load: possible cellular mechanisms.
    Spangenburg EE
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):328-35. PubMed ID: 19448694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Imaging Method (FIM-ID) Reveals that Myofibrillogenesis Plays a Major Role in the Mechanically Induced Growth of Skeletal Muscle.
    Jorgenson KW; Hibbert JE; Sayed RKA; Lange AN; Godwin JS; Mesquita PHC; Ruple BA; McIntosh MC; Kavazis AN; Roberts MD; Hornberger TA
    bioRxiv; 2023 Dec; ():. PubMed ID: 37745462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb.
    Huijing PA
    J Biomech; 1999 Apr; 32(4):329-45. PubMed ID: 10213024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.