These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 32660165)

  • 21. Neuromuscular adaptability of male and female rats to muscle unloading.
    Deschenes MR; Adan MA; Kapral MC; Kressin KA; Leathrum CM; Seo A; Li S; Schaffrey EC
    J Neurosci Res; 2018 Feb; 96(2):284-296. PubMed ID: 28759131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.
    Berdeaux R; Stewart R
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E1-17. PubMed ID: 22354781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Form follows function: how muscle shape is regulated by work.
    Russell B; Motlagh D; Ashley WW
    J Appl Physiol (1985); 2000 Mar; 88(3):1127-32. PubMed ID: 10710412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implications of exercise training and distribution of protein intake on molecular processes regulating skeletal muscle plasticity.
    Margolis LM; Rivas DA
    Calcif Tissue Int; 2015 Mar; 96(3):211-21. PubMed ID: 25348078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.
    Pérez-Schindler J; Esparza MC; McKendry J; Breen L; Philp A; Schenk S
    Am J Physiol Cell Physiol; 2017 Sep; 313(3):C257-C261. PubMed ID: 28659288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli.
    Ozaki H; Loenneke JP; Buckner SL; Abe T
    Med Hypotheses; 2016 Mar; 88():22-6. PubMed ID: 26880629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads.
    Tobita K; Garrison JB; Liu LJ; Tinney JP; Keller BB
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Mar; 283(1):193-201. PubMed ID: 15678488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular basis for load-induced skeletal muscle hypertrophy.
    Marcotte GR; West DW; Baar K
    Calcif Tissue Int; 2015 Mar; 96(3):196-210. PubMed ID: 25359125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Satellite cell regulation following myotrauma caused by resistance exercise.
    Vierck J; O'Reilly B; Hossner K; Antonio J; Byrne K; Bucci L; Dodson M
    Cell Biol Int; 2000; 24(5):263-72. PubMed ID: 10805959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eccentric contraction-induced myofiber growth in tumor-bearing mice.
    Hardee JP; Mangum JE; Gao S; Sato S; Hetzler KL; Puppa MJ; Fix DK; Carson JA
    J Appl Physiol (1985); 2016 Jan; 120(1):29-37. PubMed ID: 26494443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise dosing to retain resistance training adaptations in young and older adults.
    Bickel CS; Cross JM; Bamman MM
    Med Sci Sports Exerc; 2011 Jul; 43(7):1177-87. PubMed ID: 21131862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absolute and relative growth of rat skeletal muscle.
    Tamaki T; Uchiyama S
    Physiol Behav; 1995 May; 57(5):913-9. PubMed ID: 7610144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical signal transduction in skeletal muscle growth and adaptation.
    Tidball JG
    J Appl Physiol (1985); 2005 May; 98(5):1900-8. PubMed ID: 15829723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy.
    Spangenburg EE; Le Roith D; Ward CW; Bodine SC
    J Physiol; 2008 Jan; 586(1):283-91. PubMed ID: 17974583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of long-term hypergravitation on the skeletal-muscular tissue in rats].
    Nemirovskaia TL; Shenkman BS; Krasnov IB
    Ross Fiziol Zh Im I M Sechenova; 2005 Feb; 91(2):113-21. PubMed ID: 15835534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional adaptations of the cardiovascular system by training.
    Huonker M; Halle M; Keul J
    Int J Sports Med; 1996 Nov; 17 Suppl 3():S164-72. PubMed ID: 9119538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis.
    Lixandrão ME; Ugrinowitsch C; Berton R; Vechin FC; Conceição MS; Damas F; Libardi CA; Roschel H
    Sports Med; 2018 Feb; 48(2):361-378. PubMed ID: 29043659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies.
    Bernard C; Zavoriti A; Pucelle Q; Chazaud B; Gondin J
    Physiol Rep; 2022 Oct; 10(19):e15480. PubMed ID: 36200266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice.
    Knoblauch MA; O'Connor DP; Clarke MS
    Obesity (Silver Spring); 2013 Jan; 21(1):135-43. PubMed ID: 23505178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function.
    Hansen SK; Ratzer J; Nielsen JL; Suetta C; Karlsen A; Kvorning T; Frandsen U; Aagaard P
    J Appl Physiol (1985); 2020 Jun; 128(6):1523-1532. PubMed ID: 32324471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.