These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 32660253)

  • 21. Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability.
    Wang S; Zhao X; Teng Y; Chen X; Ahuja R
    Langmuir; 2021 Feb; 37(7):2476-2484. PubMed ID: 33545007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S; Cha H; Orejon D; Nawaz K; Singla N; Yeung YF; Park D; Kang DH; Chang Y; Takata Y; Miljkovic N
    Langmuir; 2016 Aug; 32(31):7774-87. PubMed ID: 27409353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping.
    Oh I; Cha H; Chen J; Chavan S; Kong H; Miljkovic N; Hu Y
    ACS Nano; 2020 Oct; 14(10):13367-13379. PubMed ID: 33064463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid and Persistent Suction Condensation on Hydrophilic Surfaces for High-Efficiency Water Collection.
    Cheng Y; Wang M; Sun J; Liu M; Du B; Liu Y; Jin Y; Wen R; Lan Z; Zhou X; Ma X; Wang Z
    Nano Lett; 2021 Sep; 21(17):7411-7418. PubMed ID: 34176267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Dynamics Study on the Combined Effects of the Nanostructure and Wettability of Solid Surfaces on Bubble Nucleation.
    Zhou W; Zhang Y; Wei J
    Langmuir; 2022 Jan; 38(3):1223-1230. PubMed ID: 34995464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal.
    Li H; Aili A; Alhosani MH; Ge Q; Zhang T
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20910-20919. PubMed ID: 29792417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical Condensation.
    Yan X; Chen F; Sett S; Chavan S; Li H; Feng L; Li L; Zhao F; Zhao C; Huang Z; Miljkovic N
    ACS Nano; 2019 Jul; 13(7):8169-8184. PubMed ID: 31265236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enrichment Effects Induced by Non-uniform Wettability Surfaces in the Presence of Non-condensable Gas: A Molecular Dynamics Simulation.
    Qiang W; Lan Z; Du B; Ren W; Xu W; Wen R; Ma X
    Langmuir; 2022 Aug; 38(33):10192-10201. PubMed ID: 35959936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.
    Xiao R; Miljkovic N; Enright R; Wang EN
    Sci Rep; 2013; 3():1988. PubMed ID: 23759735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Dynamics Simulations of Water Condensation on Surfaces with Tunable Wettability.
    Ranathunga DTS; Shamir A; Dai X; Nielsen SO
    Langmuir; 2020 Jul; 36(26):7383-7391. PubMed ID: 32498521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.
    Zamuruyev KO; Bardaweel HK; Carron CJ; Kenyon NJ; Brand O; Delplanque JP; Davis CE
    Langmuir; 2014 Aug; 30(33):10133-42. PubMed ID: 25073014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.
    Ölçeroğlu E; Hsieh CY; Rahman MM; Lau KK; McCarthy M
    Langmuir; 2014 Jul; 30(25):7556-66. PubMed ID: 24882117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of substrate wettability and flexibility on the initial stage of water vapor condensation.
    Che Q; Lu Y; Wang F; Zhao X
    Soft Matter; 2019 Dec; 15(48):10055-10064. PubMed ID: 31774101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation.
    Wang R; Wu F; Xing D; Yu F; Gao X
    ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundamental Limits of the Spatial Control of Heterogeneous Nucleation on Biphilic Surfaces.
    Kim MK; Sett S; Hoque MJ; Kim E; Ahn J; Miljkovic N
    Langmuir; 2024 Aug; 40(33):17767-17778. PubMed ID: 39119907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.