These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32660981)

  • 61. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
    Hesselberth JR; Chen X; Zhang Z; Sabo PJ; Sandstrom R; Reynolds AP; Thurman RE; Neph S; Kuehn MS; Noble WS; Fields S; Stamatoyannopoulos JA
    Nat Methods; 2009 Apr; 6(4):283-9. PubMed ID: 19305407
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Detection of active transcription factor binding sites with the combination of DNase hypersensitivity and histone modifications.
    Gusmao EG; Dieterich C; Zenke M; Costa IG
    Bioinformatics; 2014 Nov; 30(22):3143-51. PubMed ID: 25086003
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space.
    Karnik R; Beer MA
    PLoS One; 2015; 10(10):e0140557. PubMed ID: 26465884
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data.
    Pique-Regi R; Degner JF; Pai AA; Gaffney DJ; Gilad Y; Pritchard JK
    Genome Res; 2011 Mar; 21(3):447-55. PubMed ID: 21106904
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A proximity-based graph clustering method for the identification and application of transcription factor clusters.
    Spadafore M; Najarian K; Boyle AP
    BMC Bioinformatics; 2017 Nov; 18(1):530. PubMed ID: 29187152
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 68. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Anchor: trans-cell type prediction of transcription factor binding sites.
    Li H; Quang D; Guan Y
    Genome Res; 2019 Feb; 29(2):281-292. PubMed ID: 30567711
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Resolving diverse protein-DNA footprints from exonuclease-based ChIP experiments.
    Biswas A; Narlikar L
    Bioinformatics; 2021 Jul; 37(Suppl_1):i367-i375. PubMed ID: 34252930
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo.
    Kang SH; Vieira K; Bungert J
    Nucleic Acids Res; 2002 May; 30(10):e44. PubMed ID: 12000849
    [TBL] [Abstract][Full Text] [Related]  

  • 73. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data.
    Yang Y; Pe'er D
    Bioinformatics; 2024 Jun; 40(Suppl 1):i567-i575. PubMed ID: 38940155
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluating phylogenetic footprinting for human-rodent comparisons.
    Sauer T; Shelest E; Wingender E
    Bioinformatics; 2006 Feb; 22(4):430-7. PubMed ID: 16332706
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 77. MYBS: a comprehensive web server for mining transcription factor binding sites in yeast.
    Tsai HK; Chou MY; Shih CH; Huang GT; Chang TH; Li WH
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W221-6. PubMed ID: 17537814
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An algorithmic perspective of de novo cis-regulatory motif finding based on ChIP-seq data.
    Liu B; Yang J; Li Y; McDermaid A; Ma Q
    Brief Bioinform; 2018 Sep; 19(5):1069-1081. PubMed ID: 28334268
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Intrinsic bias estimation for improved analysis of bulk and single-cell chromatin accessibility profiles using SELMA.
    Hu SS; Liu L; Li Q; Ma W; Guertin MJ; Meyer CA; Deng K; Zhang T; Zang C
    Nat Commun; 2022 Sep; 13(1):5533. PubMed ID: 36130957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.