These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32660987)

  • 1. Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam.
    Slater CL; Winogrodzki J; Fraile-Ribot PA; Oliver A; Khajehpour M; Mark BL
    Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32660987
    [No Abstract]   [Full Text] [Related]  

  • 2. Selection of AmpC β-Lactamase Variants and Metallo-β-Lactamases Leading to Ceftolozane/Tazobactam and Ceftazidime/Avibactam Resistance during Treatment of MDR/XDR Pseudomonas aeruginosa Infections.
    Ruedas-López A; Alonso-García I; Lasarte-Monterrubio C; Guijarro-Sánchez P; Gato E; Vázquez-Ucha JC; Vallejo JA; Fraile-Ribot PA; Fernández-Pérez B; Velasco D; Gutiérrez-Urbón JM; Oviaño M; Beceiro A; González-Bello C; Oliver A; Arca-Suárez J; Bou G
    Antimicrob Agents Chemother; 2022 Feb; 66(2):e0206721. PubMed ID: 34930034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of AmpC β-lactamase mutations of extensively drug-resistant Pseudomonas aeruginosa isolates that develop resistance to ceftolozane/tazobactam during therapy.
    Fernández-Esgueva M; López-Calleja AI; Mulet X; Fraile-Ribot PA; Cabot G; Huarte R; Rezusta A; Oliver A
    Enferm Infecc Microbiol Clin (Engl Ed); 2020 Dec; 38(10):474-478. PubMed ID: 32143893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients.
    Zamudio R; Hijazi K; Joshi C; Aitken E; Oggioni MR; Gould IM
    Int J Antimicrob Agents; 2019 Jun; 53(6):774-780. PubMed ID: 30831233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa.
    Barnes MD; Taracila MA; Rutter JD; Bethel CR; Galdadas I; Hujer AM; Caselli E; Prati F; Dekker JP; Papp-Wallace KM; Haider S; Bonomo RA
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538183
    [No Abstract]   [Full Text] [Related]  

  • 6. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa.
    Barceló IM; Jordana-Lluch E; Escobar-Salom M; Torrens G; Fraile-Ribot PA; Cabot G; Mulet X; Zamorano L; Juan C; Oliver A
    Microbiol Spectr; 2022 Oct; 10(5):e0270022. PubMed ID: 36214681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa.
    Ortiz de la Rosa JM; Nordmann P; Poirel L
    J Antimicrob Chemother; 2019 Jul; 74(7):1934-1939. PubMed ID: 31225611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical Insights into Imipenem Collateral Susceptibility Driven by
    Cabot G; Kim K; Mark BL; Oliver A; Khajehpour M
    Antimicrob Agents Chemother; 2023 Feb; 67(2):e0140922. PubMed ID: 36715512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections.
    Arca-Suárez J; Lasarte-Monterrubio C; Rodiño-Janeiro BK; Cabot G; Vázquez-Ucha JC; Rodríguez-Iglesias M; Galán-Sánchez F; Beceiro A; González-Bello C; Oliver A; Bou G
    J Antimicrob Chemother; 2021 Jan; 76(1):91-100. PubMed ID: 33083833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous and divergent evolution of resistance to cephalosporin/β-lactamase inhibitor combinations and imipenem/relebactam following ceftazidime/avibactam treatment of MDR Pseudomonas aeruginosa infections.
    Alonso-García I; Vázquez-Ucha JC; Lasarte-Monterrubio C; González-Mayo E; Lada-Salvador P; Vela-Fernández R; Aja-Macaya P; Guijarro-Sánchez P; Rumbo-Feal S; Muíño-Andrade M; Fernández-González A; Martínez-Guitián M; Beceiro A; Rodríguez-Iglesias M; Oliver A; Arca-Suárez J; Galán-Sánchez F; Bou G
    J Antimicrob Chemother; 2023 May; 78(5):1195-1200. PubMed ID: 36918743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC.
    Cabot G; Bruchmann S; Mulet X; Zamorano L; Moyà B; Juan C; Haussler S; Oliver A
    Antimicrob Agents Chemother; 2014 Jun; 58(6):3091-9. PubMed ID: 24637685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa.
    Fraile-Ribot PA; Cabot G; Mulet X; Periañez L; Martín-Pena ML; Juan C; Pérez JL; Oliver A
    J Antimicrob Chemother; 2018 Mar; 73(3):658-663. PubMed ID: 29149337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of
    Wang L; Zhang X; Zhou X; Yang F; Guo Q; Wang M
    Microbiol Spectr; 2023 Jun; 11(3):e0093223. PubMed ID: 37199669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Genome-Wide Analysis of an Isogenic Pair of
    Huang W; Hamouche JE; Wang G; Smith M; Yin C; Dhand A; Dimitrova N; Fallon JT
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenging Antimicrobial Susceptibility and Evolution of Resistance (OXA-681) during Treatment of a Long-Term Nosocomial Infection Caused by a Pseudomonas aeruginosa ST175 Clone.
    Arca-Suárez J; Fraile-Ribot P; Vázquez-Ucha JC; Cabot G; Martínez-Guitián M; Lence E; González-Bello C; Beceiro A; Rodríguez-Iglesias M; Galán-Sánchez F; Bou G; Oliver A
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31383659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar.
    Sid Ahmed MA; Abdel Hadi H; Hassan AAI; Abu Jarir S; Al-Maslamani MA; Eltai NO; Dousa KM; Hujer AM; Sultan AA; Soderquist B; Bonomo RA; Ibrahim EB; Jass J; Omrani AS
    J Antimicrob Chemother; 2019 Dec; 74(12):3497-3504. PubMed ID: 31504587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC.
    Lahiri SD; Walkup GK; Whiteaker JD; Palmer T; McCormack K; Tanudra MA; Nash TJ; Thresher J; Johnstone MR; Hajec L; Livchak S; McLaughlin RE; Alm RA
    J Antimicrob Chemother; 2015; 70(6):1650-8. PubMed ID: 25645206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.
    Berrazeg M; Jeannot K; Ntsogo Enguéné VY; Broutin I; Loeffert S; Fournier D; Plésiat P
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6248-55. PubMed ID: 26248364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative activity of newer β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa isolates from US medical centres (2020-2021).
    Sader HS; Mendes RE; Arends SJR; Carvalhaes CG; Shortridge D; Castanheira M
    Int J Antimicrob Agents; 2023 Apr; 61(4):106744. PubMed ID: 36738849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and Structural Characterization of OXA-935, a Novel OXA-10-Family β-Lactamase from Pseudomonas aeruginosa.
    Pincus NB; Rosas-Lemus M; Gatesy SWM; Bertucci HK; Brunzelle JS; Minasov G; Shuvalova LA; Lebrun-Corbin M; Satchell KJF; Ozer EA; Hauser AR; Bachta KER
    Antimicrob Agents Chemother; 2022 Oct; 66(10):e0098522. PubMed ID: 36129295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.