BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32661061)

  • 1. Photoexcited Cryptochrome2 Interacts Directly with TOE1 and TOE2 in Flowering Regulation.
    Du SS; Li L; Li L; Wei X; Xu F; Xu P; Wang W; Xu P; Cao X; Miao L; Guo T; Wang S; Mao Z; Yang HQ
    Plant Physiol; 2020 Sep; 184(1):487-505. PubMed ID: 32661061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering.
    Liu Y; Li X; Ma D; Chen Z; Wang JW; Liu H
    EMBO Rep; 2018 Oct; 19(10):. PubMed ID: 30126927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TWIN SISTER OF FT, GIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis.
    Ando E; Ohnishi M; Wang Y; Matsushita T; Watanabe A; Hayashi Y; Fujii M; Ma JF; Inoue S; Kinoshita T
    Plant Physiol; 2013 Jul; 162(3):1529-38. PubMed ID: 23669744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
    Holtkotte X; Ponnu J; Ahmad M; Hoecker U
    PLoS Genet; 2017 Oct; 13(10):e1007044. PubMed ID: 28991901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis.
    Wang W; Lu X; Li L; Lian H; Mao Z; Xu P; Guo T; Xu F; Du S; Cao X; Wang S; Shen H; Yang HQ
    Plant Cell; 2018 Sep; 30(9):1989-2005. PubMed ID: 30131420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis.
    Sarid-Krebs L; Panigrahi KC; Fornara F; Takahashi Y; Hayama R; Jang S; Tilmes V; Valverde F; Coupland G
    Plant J; 2015 Nov; 84(3):451-63. PubMed ID: 26358558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing.
    Zhao Z; Dent C; Liang H; Lv J; Shang G; Liu Y; Feng F; Wang F; Pang J; Li X; Ma L; Li B; Sureshkumar S; Wang JW; Balasubramanian S; Liu H
    Nat Commun; 2022 Nov; 13(1):7045. PubMed ID: 36396657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The AP2 transcription factors TOE1/TOE2 convey Arabidopsis age information to ethylene signaling in plant de novo root regeneration.
    Wang Y; Sun L; Wang R; Li H; Zhu Z
    Planta; 2022 Nov; 257(1):1. PubMed ID: 36409377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis.
    Zuo Z; Liu H; Liu B; Liu X; Lin C
    Curr Biol; 2011 May; 21(10):841-7. PubMed ID: 21514160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TOE1/TOE2 Interacting with GIS to Control Trichome Development in
    Liu Y; Yang S; Khan AR; Gan Y
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis.
    Liu Y; Li X; Li K; Liu H; Lin C
    PLoS Genet; 2013; 9(10):e1003861. PubMed ID: 24130508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Gu NN; Zhang YC; Yang HQ
    Mol Plant; 2012 Jan; 5(1):85-97. PubMed ID: 21765176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.
    Mockler TC; Guo H; Yang H; Duong H; Lin C
    Development; 1999 May; 126(10):2073-82. PubMed ID: 10207133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis.
    Liu LJ; Zhang YC; Li QH; Sang Y; Mao J; Lian HL; Wang L; Yang HQ
    Plant Cell; 2008 Feb; 20(2):292-306. PubMed ID: 18296627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the photocycle-how cryptochromes regulate photoresponses in plants?
    Wang Q; Zuo Z; Wang X; Liu Q; Gu L; Oka Y; Lin C
    Curr Opin Plant Biol; 2018 Oct; 45(Pt A):120-126. PubMed ID: 29913346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
    Liu B; Yang Z; Gomez A; Liu B; Lin C; Oka Y
    J Plant Res; 2016 Mar; 129(2):137-48. PubMed ID: 26810763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis.
    Endo M; Mochizuki N; Suzuki T; Nagatani A
    Plant Cell; 2007 Jan; 19(1):84-93. PubMed ID: 17259260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different response modes and cooperation modulations of blue-light receptors in photomorphogenesis.
    Wu Y; Wang Q; Qu J; Liu W; Gao X; Li X; Ouyang X; Lin C; Shuai J
    Plant Cell Environ; 2021 Jun; 44(6):1802-1815. PubMed ID: 33665849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis.
    Wang S; Li L; Xu P; Lian H; Wang W; Xu F; Mao Z; Zhang T; Yang H
    J Exp Bot; 2018 Jul; 69(16):3867-3881. PubMed ID: 29860272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR172b-TOE1/2 module regulates plant innate immunity in an age-dependent manner.
    Zou Y; Wang S; Lu D
    Biochem Biophys Res Commun; 2020 Oct; 531(4):503-507. PubMed ID: 32807500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.