BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32661075)

  • 1. Structural and Biochemical Analyses Reveal that Chlorogenic Acid Inhibits the Shikimate Pathway.
    Neetu N; Katiki M; Dev A; Gaur S; Tomar S; Kumar P
    J Bacteriol; 2020 Aug; 202(18):. PubMed ID: 32661075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization by genetic complementation of aroB-encoded dehydroquinate synthase from Mycobacterium tuberculosis H37Rv and its heterologous expression and purification.
    de Mendonça JD; Ely F; Palma MS; Frazzon J; Basso LA; Santos DS
    J Bacteriol; 2007 Sep; 189(17):6246-52. PubMed ID: 17586643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent inhibitors of a shikimate pathway enzyme from Mycobacterium tuberculosis: combining mechanism- and modeling-based design.
    Reichau S; Jiao W; Walker SR; Hutton RD; Baker EN; Parker EJ
    J Biol Chem; 2011 May; 286(18):16197-207. PubMed ID: 21454647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid.
    Sonnante G; D'Amore R; Blanco E; Pierri CL; De Palma M; Luo J; Tucci M; Martin C
    Plant Physiol; 2010 Jul; 153(3):1224-38. PubMed ID: 20431089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis.
    Dias MV; Faím LM; Vasconcelos IB; de Oliveira JS; Basso LA; Santos DS; de Azevedo WF
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jan; 63(Pt 1):1-6. PubMed ID: 17183161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SKPDB: a structural database of shikimate pathway enzymes.
    Arcuri HA; Zafalon GF; Marucci EA; Bonalumi CE; da Silveira NJ; Machado JM; de Azevedo WF; Palma MS
    BMC Bioinformatics; 2010 Jan; 11():12. PubMed ID: 20055992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shikimate and phenylalanine biosynthesis in the green lineage.
    Tohge T; Watanabe M; Hoefgen R; Fernie AR
    Front Plant Sci; 2013; 4():62. PubMed ID: 23543266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of action of lipoprotein modification enzymes-Novel antibacterial targets.
    Legood S; Boneca IG; Buddelmeijer N
    Mol Microbiol; 2021 Mar; 115(3):356-365. PubMed ID: 32979868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting insecticidal activity in plants driven by chlorogenic acid-loaded metal-organic frameworks.
    Rincón I; Contreras M; Sierra-Serrano B; Salles F; Rodríguez-Diéguez A; Rojas S; Horcajada P
    J Mater Chem B; 2024 May; 12(19):4717-4723. PubMed ID: 38655651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unleashing the power of chlorogenic acid: exploring its potential in nutrition delivery and the food industry.
    Hu S; Zhao R; Chi X; Chen T; Li Y; Xu Y; Zhu B; Hu J
    Food Funct; 2024 May; 15(9):4741-4762. PubMed ID: 38629635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorogenic Acid: The Conceivable Chemosensitizer Leading to Cancer Growth Suppression.
    Lukitasari M; Nugroho DA; Widodo N
    J Evid Based Integr Med; 2018; 23():2515690X18789628. PubMed ID: 30051721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potent Inhibition of
    Coco LB; Toci EM; Chen PY; Drennan CL; Freel Meyers CL
    ACS Infect Dis; 2024 Apr; 10(4):1312-1326. PubMed ID: 38513073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method.
    Ncube EN; Mhlongo MI; Piater LA; Steenkamp PA; Dubery IA; Madala NE
    Chem Cent J; 2014; 8(1):66. PubMed ID: 25426160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview of the detection methods for equilibrium dissociation constant
    Ma W; Yang L; He L
    J Pharm Anal; 2018 Jun; 8(3):147-152. PubMed ID: 29922482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Chlorogenic Acid on
    Wu Y; Liang S; Zhang M; Wang Z; Wang Z; Ren X
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UPLC-MS Analysis, Quantification of Compounds, and Comparison of Bioactivity of Methanol Extract and Its Fractions from Qiai (
    Zhang T; Wan D; Li Y; Wang S; Zhou X; Sefidkon F; Yang X
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals.
    Suganya T; Packiavathy IASV; Aseervatham GSB; Carmona A; Rashmi V; Mariappan S; Devi NR; Ananth DA
    Front Cell Infect Microbiol; 2022; 12():883839. PubMed ID: 35846771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydroquinate Synthase Directly Binds to Streptomycin and Regulates Susceptibility of
    Wei W; Qiao J; Jiang X; Cai L; Hu X; He J; Chen M; Yang M; Cui T
    Front Microbiol; 2022; 13():818881. PubMed ID: 35516432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis and essentiality of Aro1 shikimate biosynthesis multi-enzyme in
    Stogios PJ; Liston SD; Semper C; Quade B; Michalska K; Evdokimova E; Ram S; Otwinowski Z; Borek D; Cowen LE; Savchenko A
    Life Sci Alliance; 2022 Aug; 5(8):. PubMed ID: 35512834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insights into Dihydroxylation of Terephthalate, a Product of Polyethylene Terephthalate Degradation.
    Mahto JK; Neetu N; Sharma M; Dubey M; Vellanki BP; Kumar P
    J Bacteriol; 2022 Mar; 204(3):e0054321. PubMed ID: 35007143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.