BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32661148)

  • 1. The unusual
    Wang Q; Huang J; Li Y; Dooner HK
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):18091-18098. PubMed ID: 32661148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous mutations in maize pollen are frequent in some lines and arise mainly from retrotranspositions and deletions.
    Dooner HK; Wang Q; Huang JT; Li Y; He L; Xiong W; Du C
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10734-10743. PubMed ID: 30992374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme structural heterogeneity among the members of a maize retrotransposon family.
    Marillonnet S; Wessler SR
    Genetics; 1998 Nov; 150(3):1245-56. PubMed ID: 9799276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the evolution of the grande retrotransposon in the zea genus.
    García-Martínez J; Martínez-Izquierdo JA
    Mol Biol Evol; 2003 May; 20(5):831-41. PubMed ID: 12679538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and evolution of the Cinful retrotransposon family of maize.
    Sanz-Alferez S; SanMiguel P; Jin YK; Springer PS; Bennetzen JL
    Genome; 2003 Oct; 46(5):745-52. PubMed ID: 14608391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication of nonautonomous retroelements in soybean appears to be both recent and common.
    Wawrzynski A; Ashfield T; Chen NW; Mammadov J; Nguyen A; Podicheti R; Cannon SB; Thareau V; Ameline-Torregrosa C; Cannon E; Chacko B; Couloux A; Dalwani A; Denny R; Deshpande S; Egan AN; Glover N; Howell S; Ilut D; Lai H; Del Campo SM; Metcalf M; O'Bleness M; Pfeil BE; Ratnaparkhe MB; Samain S; Sanders I; Ségurens B; Sévignac M; Sherman-Broyles S; Tucker DM; Yi J; Doyle JJ; Geffroy V; Roe BA; Maroof MA; Young ND; Innes RW
    Plant Physiol; 2008 Dec; 148(4):1760-71. PubMed ID: 18952860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.
    Vitte C; Panaud O
    Cytogenet Genome Res; 2005; 110(1-4):91-107. PubMed ID: 16093661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight.
    Li C; Tang J; Hu Z; Wang J; Yu T; Yi H; Cao M
    Plant Cell Rep; 2020 Mar; 39(3):393-408. PubMed ID: 31834482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes.
    Cossu RM; Casola C; Giacomello S; Vidalis A; Scofield DG; Zuccolo A
    Genome Biol Evol; 2017 Dec; 9(12):3449-3462. PubMed ID: 29228262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMS Mutagenesis of Maize Pollen.
    Settles AM
    Methods Mol Biol; 2020; 2122():25-33. PubMed ID: 31975293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Wukong Terminal-Repeat Retrotransposon in Miniature (TRIM) Elements in Diverse Maize Germplasm.
    Liu Z; Li X; Wang T; Messing J; Xu JH
    G3 (Bethesda); 2015 May; 5(8):1585-92. PubMed ID: 26019188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing.
    Marillonnet S; Wessler SR
    Plant Cell; 1997 Jun; 9(6):967-78. PubMed ID: 9212470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon.
    Vicient CM; Kalendar R; Schulman AH
    J Mol Evol; 2005 Sep; 61(3):275-91. PubMed ID: 16034651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency recombination between members of an LTR retrotransposon family during transposition bursts.
    Sanchez DH; Gaubert H; Drost HG; Zabet NR; Paszkowski J
    Nat Commun; 2017 Nov; 8(1):1283. PubMed ID: 29097664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.
    Ji Y; DeWoody JA
    J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.).
    Rey-Baños R; Sáenz de Miera LE; García P; Pérez de la Vega M
    PLoS One; 2017; 12(4):e0176728. PubMed ID: 28448614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The paleontology of intergene retrotransposons of maize.
    SanMiguel P; Gaut BS; Tikhonov A; Nakajima Y; Bennetzen JL
    Nat Genet; 1998 Sep; 20(1):43-5. PubMed ID: 9731528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double fertilization in maize: the two male gametes from a pollen grain have the ability to fuse with egg cells.
    Faure JE; Rusche ML; Thomas A; Keim P; Dumas C; Mogensen HL; Rougier M; Chaboud A
    Plant J; 2003 Mar; 33(6):1051-62. PubMed ID: 12631329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.