These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32661164)

  • 21. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA.
    Berne C; Ellison CK; Agarwal R; Severin GB; Fiebig A; Morton RI; Waters CM; Brun YV
    Mol Microbiol; 2018 Oct; 110(2):219-238. PubMed ID: 30079982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Core-oscillator model of Caulobacter crescentus.
    Vandecan Y; Biondi E; Blossey R
    Phys Rev E; 2016 Jun; 93(6):062413. PubMed ID: 27415304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics.
    Ribbe J; Baker AE; Euler S; O'Toole GA; Maier B
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Genome-Wide Analysis of Adhesion in
    Hershey DM; Fiebig A; Crosson S
    mBio; 2019 Feb; 10(1):. PubMed ID: 30755507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control.
    Ozaki S; Schalch-Moser A; Zumthor L; Manfredi P; Ebbensgaard A; Schirmer T; Jenal U
    Mol Microbiol; 2014 Nov; 94(3):580-94. PubMed ID: 25171231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus.
    Christen M; Christen B; Allan MG; Folcher M; Jenö P; Grzesiek S; Jenal U
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):4112-7. PubMed ID: 17360486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
    Gonzalez D; Collier J
    J Bacteriol; 2014 Jul; 196(14):2514-25. PubMed ID: 24794566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene.
    Gorbatyuk B; Marczynski GT
    Mol Microbiol; 2001 Apr; 40(2):485-97. PubMed ID: 11309130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus.
    Ozaki S; Jenal U; Katayama T
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion.
    Lin Y; Crosson S; Scherer NF
    Mol Syst Biol; 2010 Dec; 6():445. PubMed ID: 21179017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of replication initiation: lessons from Caulobacter crescentus.
    Ozaki S
    Genes Genet Syst; 2019 Dec; 94(5):183-196. PubMed ID: 31495806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fresh Extension of Vibrio cholerae Competence Type IV Pili Predisposes Them for Motor-Independent Retraction.
    Chlebek JL; Dalia TN; Biais N; Dalia AB
    Appl Environ Microbiol; 2021 Jun; 87(14):e0047821. PubMed ID: 33990308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bifunctional ATPase drives tad pilus extension and retraction.
    Ellison CK; Kan J; Chlebek JL; Hummels KR; Panis G; Viollier PH; Biais N; Dalia AB; Brun YV
    Sci Adv; 2019 Dec; 5(12):eaay2591. PubMed ID: 31897429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.
    Floyd KA; Lee CK; Xian W; Nametalla M; Valentine A; Crair B; Zhu S; Hughes HQ; Chlebek JL; Wu DC; Hwan Park J; Farhat AM; Lomba CJ; Ellison CK; Brun YV; Campos-Gomez J; Dalia AB; Liu J; Biais N; Wong GCL; Yildiz FH
    Nat Commun; 2020 Mar; 11(1):1549. PubMed ID: 32214098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of
    Sperling L; Mulero Alegría MD; Kaever V; Curtis PD
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31383736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus.
    Brown PJ; Hardy GG; Trimble MJ; Brun YV
    Adv Microb Physiol; 2009; 54():1-101. PubMed ID: 18929067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain.
    Paul R; Weiser S; Amiot NC; Chan C; Schirmer T; Giese B; Jenal U
    Genes Dev; 2004 Mar; 18(6):715-27. PubMed ID: 15075296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility.
    Kuchma SL; Griffin EF; O'Toole GA
    J Bacteriol; 2012 Oct; 194(19):5388-403. PubMed ID: 22865844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.