BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32661227)

  • 1. Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in mice.
    Fu H; Zhao Y; Hu D; Wang S; Yu T; Zhang L
    Cell Death Dis; 2020 Jul; 11(7):528. PubMed ID: 32661227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury.
    Zhou ZL; Xie H; Tian XB; Xu HL; Li W; Yao S; Zhang H
    Neural Regen Res; 2023 Jun; 18(6):1325-1331. PubMed ID: 36453419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates.
    Poulen G; Aloy E; Bringuier CM; Mestre-Francés N; Artus EVF; Cardoso M; Perez JC; Goze-Bac C; Boukhaddaoui H; Lonjon N; Gerber YN; Perrin FE
    Theranostics; 2021; 11(18):8640-8659. PubMed ID: 34522204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSF1R Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury.
    Gerber YN; Saint-Martin GP; Bringuier CM; Bartolami S; Goze-Bac C; Noristani HN; Perrin FE
    Front Cell Neurosci; 2018; 12():368. PubMed ID: 30386212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice.
    Li Y; Ritzel RM; Khan N; Cao T; He J; Lei Z; Matyas JJ; Sabirzhanov B; Liu S; Li H; Stoica BA; Loane DJ; Faden AI; Wu J
    Theranostics; 2020; 10(25):11376-11403. PubMed ID: 33052221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.
    Watanabe S; Uchida K; Nakajima H; Matsuo H; Sugita D; Yoshida A; Honjoh K; Johnson WE; Baba H
    Stem Cells; 2015 Jun; 33(6):1902-14. PubMed ID: 25809552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation.
    Ma D; Zhao Y; Huang L; Xiao Z; Chen B; Shi Y; Shen H; Dai J
    Biomaterials; 2020 Apr; 237():119830. PubMed ID: 32036301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice.
    Kobashi S; Terashima T; Katagi M; Nakae Y; Okano J; Suzuki Y; Urushitani M; Kojima H
    Mol Ther; 2020 Jan; 28(1):254-265. PubMed ID: 31604678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury.
    Bellver-Landete V; Bretheau F; Mailhot B; Vallières N; Lessard M; Janelle ME; Vernoux N; Tremblay MÈ; Fuehrmann T; Shoichet MS; Lacroix S
    Nat Commun; 2019 Jan; 10(1):518. PubMed ID: 30705270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.
    Wang Y; Gao Z; Zhang Y; Feng SQ; Liu Y; Shields LBE; Zhao YZ; Zhu Q; Gozal D; Shields CB; Cai J
    Mol Neurobiol; 2016 Jul; 53(5):3448-3461. PubMed ID: 26084439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting miR-106-3p facilitates functional recovery via inactivating inflammatory microglia and interfering glial scar component deposition after neural injury.
    Yang YH; Zhu J
    Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):9000-9008. PubMed ID: 31696488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fascin-1 limits myosin activity in microglia to control mechanical characterization of the injured spinal cord.
    Huang J; Hu X; Chen Z; Ouyang F; Li J; Hu Y; Zhao Y; Wang J; Yao F; Jing J; Cheng L
    J Neuroinflammation; 2024 Apr; 21(1):88. PubMed ID: 38600569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury.
    Chen H; Ji H; Zhang M; Liu Z; Lao L; Deng C; Chen J; Zhong G
    J Neurosci; 2017 Mar; 37(11):2916-2930. PubMed ID: 28193684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice.
    Yang Z; Xie W; Ju F; Khan A; Zhang S
    Neuropharmacology; 2017 Apr; 116():30-37. PubMed ID: 27965141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury.
    Zeng H; Liu N; Yang YY; Xing HY; Liu XX; Li F; La GY; Huang MJ; Zhou MW
    J Neuroinflammation; 2019 Dec; 16(1):283. PubMed ID: 31888724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages.
    Zhang Y; Liu Z; Zhang W; Wu Q; Zhang Y; Liu Y; Guan Y; Chen X
    J Neurosci Res; 2019 Jul; 97(7):733-743. PubMed ID: 31006904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PPP1CC is associated with astrocyte and microglia proliferation after traumatic spinal cord injury in rats.
    Liu X; Huang S; Liu C; Liu X; Shen Y; Cui Z
    Pathol Res Pract; 2017 Nov; 213(11):1355-1364. PubMed ID: 29033188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury.
    Nakajima H; Honjoh K; Watanabe S; Kubota A; Matsumine A
    Neurosci Lett; 2020 Oct; 737():135152. PubMed ID: 32531528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media.
    Guo L; Rolfe AJ; Wang X; Tai W; Cheng Z; Cao K; Chen X; Xu Y; Sun D; Li J; He X; Young W; Fan J; Ren Y
    Mol Brain; 2016 May; 9(1):48. PubMed ID: 27153974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Peroxiredoxin 1 After Traumatic Spinal Cord Injury in Rats.
    Huang S; Liu X; Zhang J; Bao G; Xu G; Sun Y; Shen Q; Lian M; Huang Y; Cui Z
    Cell Mol Neurobiol; 2015 Nov; 35(8):1217-26. PubMed ID: 26003307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.