BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32661698)

  • 1. Microfluidic Chip based direct triple antibody immunoassay for monitoring patient comparative response to leukemia treatment.
    İçöz K; Akar Ü; Ünal E
    Biomed Microdevices; 2020 Jul; 22(3):48. PubMed ID: 32661698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.
    Feng Z; Zhi S; Guo L; Zhou Y; Lei C
    Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An embedded microretroreflector-based microfluidic immunoassay platform.
    Raja B; Pascente C; Knoop J; Shakarisaz D; Sherlock T; Kemper S; Kourentzi K; Renzi RF; Hatch AV; Olano J; Peng BH; Ruchhoeft P; Willson R
    Lab Chip; 2016 Apr; 16(9):1625-35. PubMed ID: 27025227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-analysis based readout method for biochip: Automated quantification of immunomagnetic beads, micropads and patient leukemia cell.
    Uslu F; Icoz K; Tasdemir K; Doğan RS; Yilmaz B
    Micron; 2020 Jun; 133():102863. PubMed ID: 32234685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers.
    Gao R; Lv Z; Mao Y; Yu L; Bi X; Xu S; Cui J; Wu Y
    ACS Sens; 2019 Apr; 4(4):938-943. PubMed ID: 30864786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip.
    Song Z; Li M; Li B; Yan Y; Song Y
    Electrophoresis; 2019 Mar; 40(6):897-905. PubMed ID: 30379341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection.
    Yang SY; Lien KY; Huang KJ; Lei HY; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):861-8. PubMed ID: 18760587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device.
    Freitas TA; Proença CA; Baldo TA; Materón EM; Wong A; Magnani RF; Faria RC
    Talanta; 2019 Dec; 205():120110. PubMed ID: 31450419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing B type acute lymphoblastic leukemia cells using two types of antibodies.
    İçöz K; Gerçek T; Murat A; Özcan S; Ünal E
    Biotechnol Prog; 2019 Jan; 35(1):e2737. PubMed ID: 30353996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bead-based microfluidic immunoassay for diagnosis of Johne's disease.
    Wadhwa A; Foote RS; Shaw RW; Eda S
    J Immunol Methods; 2012 Aug; 382(1-2):196-202. PubMed ID: 22705087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flyover style microfluidic chip for highly purified magnetic cell separation.
    Lin S; Zhi X; Chen D; Xia F; Shen Y; Niu J; Huang S; Song J; Miao J; Cui D; Ding X
    Biosens Bioelectron; 2019 Mar; 129():175-181. PubMed ID: 30710755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays.
    Yang Y; Zeng Y
    Lab Chip; 2018 Dec; 18(24):3830-3839. PubMed ID: 30394473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wash-free non-spectroscopic optical immunoassay by controlling retroreflective microparticle movement in a microfluidic chip.
    Kim KR; Chun HJ; Lee KW; Jeong KY; Kim JH; Yoon HC
    Lab Chip; 2019 Dec; 19(23):3931-3942. PubMed ID: 31650135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, multiplexed detection of biomolecules using electrically distinct hydrogel beads.
    Cowell TW; Valera E; Jankelow A; Park J; Schrader AW; Ding R; Berger J; Bashir R; Han HS
    Lab Chip; 2020 Jun; 20(13):2274-2283. PubMed ID: 32490455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone-Based Paper Microfluidic Immunoassay of Salmonella and E. coli.
    Dieckhaus L; Park TS; Yoon JY
    Methods Mol Biol; 2021; 2182():83-101. PubMed ID: 32894489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid detection of Pseudomonas aeruginosa based on lab-on-a-chip platform using immunomagnetic separation, light scattering, and machine learning.
    Hussain M; Liu X; Tang S; Zou J; Wang Z; Ali Z; He N; Tang Y
    Anal Chim Acta; 2022 Jan; 1189():339223. PubMed ID: 34815054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunomagnetic Separation of Salmonella with Tailored Magnetic Micro- and Nanocarriers.
    Pividori MI
    Methods Mol Biol; 2021; 2182():51-65. PubMed ID: 32894487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel enzyme-free immunomagnetic microfluidic device based on Co
    Proença CA; Baldo TA; Freitas TA; Materón EM; Wong A; Durán AA; Melendez ME; Zambrano G; Faria RC
    Anal Chim Acta; 2019 Sep; 1071():59-69. PubMed ID: 31128756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.