These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32662115)

  • 1. ZmDREB2A regulates ZmGH3.2 and ZmRAFS, shifting metabolism towards seed aging tolerance over seedling growth.
    Han Q; Chen K; Yan D; Hao G; Qi J; Wang C; Dirk LMA; Bruce Downie A; Gong J; Wang J; Zhao T
    Plant J; 2020 Sep; 104(1):268-282. PubMed ID: 32662115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize.
    Han Q; Qi J; Hao G; Zhang C; Wang C; Dirk LMA; Downie AB; Zhao T
    Plant Cell Physiol; 2020 Feb; 61(2):331-341. PubMed ID: 31638155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raffinose catabolism enhances maize waterlogging tolerance by stimulating adventitious root growth and development.
    Yan D; Gao Y; Zhang Y; Li D; Dirk LMA; Downie AB; Zhao T
    J Exp Bot; 2024 Sep; 75(18):5955-5970. PubMed ID: 38938017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of seed priming with auxin on ROS detoxification and carbohydrate metabolism and their relationship with germination and early seedling establishment in salt stressed maize.
    Ellouzi H; Ben Slimene Debez I; Amraoui S; Rabhi M; Hanana M; Alyami NM; Debez A; Abdelly C; Zorrig W
    BMC Plant Biol; 2024 Jul; 24(1):704. PubMed ID: 39054427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A.
    Gu L; Zhang Y; Zhang M; Li T; Dirk LM; Downie B; Zhao T
    Plant Mol Biol; 2016 Jan; 90(1-2):157-70. PubMed ID: 26584560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.
    Qin F; Kakimoto M; Sakuma Y; Maruyama K; Osakabe Y; Tran LS; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2007 Apr; 50(1):54-69. PubMed ID: 17346263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.
    Feng S; Yue R; Tao S; Yang Y; Zhang L; Xu M; Wang H; Shen C
    J Integr Plant Biol; 2015 Sep; 57(9):783-95. PubMed ID: 25557253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin homeostasis in maize (Zea mays) is regulated via 1-O-indole-3-acetyl-myo-inositol synthesis at early stages of seedling development and under abiotic stress.
    Ciarkowska A; Wojtaczka P; Kęsy J; Ostrowski M
    Planta; 2022 Dec; 257(1):23. PubMed ID: 36539632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raffinose positively regulates maize drought tolerance by reducing leaf transpiration.
    Liu Y; Li T; Zhang C; Zhang W; Deng N; Dirk LMA; Downie AB; Zhao T
    Plant J; 2023 Apr; 114(1):55-67. PubMed ID: 36703577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and
    Li T; Zhang Y; Liu Y; Li X; Hao G; Han Q; Dirk LMA; Downie AB; Ruan YL; Wang J; Wang G; Zhao T
    J Biol Chem; 2020 Jun; 295(23):8064-8077. PubMed ID: 32366461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis pathway of indole-3-acetyl-myo-inositol during development of maize (Zea mays L.) seeds.
    Ostrowski M; Ciarkowska A; Dalka A; Wilmowicz E; Jakubowska A
    J Plant Physiol; 2020 Feb; 245():153082. PubMed ID: 31862648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene.
    Zhao L; Wang P; Yan S; Gao F; Li H; Hou H; Zhang Q; Tan J; Li L
    Physiol Plant; 2014 Aug; 151(4):459-67. PubMed ID: 24299295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize.
    Chourey PS; Li QB; Kumar D
    Mol Plant; 2010 Nov; 3(6):1026-36. PubMed ID: 20924026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays.
    Niu L; Wu Z; Liu H; Wu X; Wang W
    BMC Genomics; 2019 Oct; 20(1):758. PubMed ID: 31640549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichoderma asperellum Induces Maize Seedling Growth by Activating the Plasma Membrane H
    López-Coria M; J L Hernández-Mendoza ; Sánchez-Nieto S
    Mol Plant Microbe Interact; 2016 Oct; 29(10):797-806. PubMed ID: 27643387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T
    Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis.
    Chen X; Zhang M; Wang M; Tan G; Zhang M; Hou YX; Wang B; Li Z
    BMC Plant Biol; 2018 Dec; 18(1):361. PubMed ID: 30563457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous Serotonin (5-HT) Promotes Mesocotyl and Coleoptile Elongation in Maize Seedlings under Deep-Seeding Stress through Enhancing Auxin Accumulation and Inhibiting Lignin Formation.
    Zhao X; Li J; Niu Y; Hossain Z; Gao X; Bai X; Mao T; Qi G; He F
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.
    Dubey G; Kollah B; Ahirwar U; Mandal A; Thakur JK; Patra AK; Mohanty SR
    Can J Microbiol; 2017 Oct; 63(10):822-833. PubMed ID: 28759736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.
    Schlicht M; Ludwig-Müller J; Burbach C; Volkmann D; Baluska F
    New Phytol; 2013 Oct; 200(2):473-482. PubMed ID: 23795714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.