These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32662211)

  • 1. Water loss and temperature interact to compound amphibian vulnerability to climate change.
    Lertzman-Lepofsky GF; Kissel AM; Sinervo B; Palen WJ
    Glob Chang Biol; 2020 Sep; 26(9):4868-4879. PubMed ID: 32662211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compounding effects of climate change reduce population viability of a montane amphibian.
    Kissel AM; Palen WJ; Ryan ME; Adams MJ
    Ecol Appl; 2019 Mar; 29(2):e01832. PubMed ID: 30589982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche.
    Hoffmann EP; Cavanough KL; Mitchell NJ
    Conserv Physiol; 2021; 9(1):coab027. PubMed ID: 33959292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroregulation in a tropical dry-skinned ectotherm.
    Pintor AF; Schwarzkopf L; Krockenberger AK
    Oecologia; 2016 Dec; 182(4):925-931. PubMed ID: 27384338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming.
    Delgado-Suazo P; Burrowes PA
    J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal physiology and climate vulnerability in amphibians.
    Greenberg DA; Palen WJ
    Proc Biol Sci; 2021 Feb; 288(1945):20202273. PubMed ID: 33593188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term change in water availability influences thermoregulation behaviours in a dry-skinned ectotherm.
    Rozen-Rechels D; Farigoule P; Agostini S; Badiane A; Meylan S; Le Galliard JF
    J Anim Ecol; 2020 Sep; 89(9):2099-2110. PubMed ID: 32535907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA
    Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change, multiple stressors, and the decline of ectotherms.
    Rohr JR; Palmer BD
    Conserv Biol; 2013 Aug; 27(4):741-51. PubMed ID: 23773091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change and collapsing thermal niches of desert reptiles and amphibians: Assisted migration and acclimation rescue from extirpation.
    Sinervo B; Lara Reséndiz RA; Miles DB; Lovich JE; Rosen PC; Gadsden H; Gaytán GC; Tessaro PG; Luja VH; Huey RB; Whipple A; Cordero VS; Rohr JB; Caetano G; Santos JC; Sites JW; Méndez de la Cruz FR
    Sci Total Environ; 2024 Jan; 908():168431. PubMed ID: 37951272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review and synthesis of the effects of climate change on amphibians.
    Li Y; Cohen JM; Rohr JR
    Integr Zool; 2013 Jun; 8(2):145-61. PubMed ID: 23731811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canopy coverage, light, and moisture affect thermoregulatory trade-offs in an amphibian breeding habitat.
    Spranger RR; Raffel TR; Sinervo BR
    J Therm Biol; 2024 May; 122():103864. PubMed ID: 38852487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioural hydroregulation protects against acute effects of drought in a dry-skinned ectotherm.
    Dezetter M; Le Galliard JF; Lourdais O
    Oecologia; 2023 Feb; 201(2):355-367. PubMed ID: 36564481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-year data from satellite- and ground-based sensors show details and scale matter in assessing climate's effects on wetland surface water, amphibians, and landscape conditions.
    Sadinski W; Gallant AL; Roth M; Brown J; Senay G; Brininger W; Jones PM; Stoker J
    PLoS One; 2018; 13(9):e0201951. PubMed ID: 30192764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability.
    Perotti MG; Bonino MF; Ferraro D; Cruz FB
    Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability of Voluntary Thermal Maximum and Covariance with Water Loss Reveal Potential for Adaptation to Changing Climates.
    McTernan MR; Sears MW
    Physiol Biochem Zool; 2022; 95(2):113-121. PubMed ID: 34986078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water availability and environmental temperature correlate with geographic variation in water balance in common lizards.
    Dupoué A; Rutschmann A; Le Galliard JF; Miles DB; Clobert J; DeNardo DF; Brusch GA; Meylan S
    Oecologia; 2017 Dec; 185(4):561-571. PubMed ID: 29018996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.
    Albright TP; Mutiibwa D; Gerson AR; Smith EK; Talbot WA; O'Neill JJ; McKechnie AE; Wolf BO
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2283-2288. PubMed ID: 28193891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.