BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32662290)

  • 1. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry.
    Egan MJ; Colón AM; Angel SM; Sharma SK
    Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grating Spectrometry and Spatial Heterodyne Fourier Transform Spectrometry: Comparative Noise Analysis for Raman Measurements.
    Ciaffoni L; Matousek P; Parker W; McCormack EA; Mortimer H
    Appl Spectrosc; 2021 Mar; 75(3):241-249. PubMed ID: 33044086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.
    Barnett PD; Strange KA; Angel SM
    Appl Spectrosc; 2017 Jun; 71(6):1380-1386. PubMed ID: 27956594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monolithic Spatial Heterodyne Raman Spectrometer: Initial Tests.
    Waldron A; Allen A; Colón A; Carter JC; Angel SM
    Appl Spectrosc; 2021 Jan; 75(1):57-69. PubMed ID: 32495633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept.
    Gomer NR; Gordon CM; Lucey P; Sharma SK; Carter JC; Angel SM
    Appl Spectrosc; 2011 Aug; 65(8):849-57. PubMed ID: 21819774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Data Reduction Procedures in Spatial Heterodyne Raman Spectroscopy with Applications to Planetary Surface Analogs.
    Egan MJ; Angel SM; Sharma SK
    Appl Spectrosc; 2018 Jun; 72(6):933-942. PubMed ID: 29381083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Grating Monolithic Spatial Heterodyne Raman Spectrometer: An Investigation on the Effects of Detector Selection.
    Kelly EM; Egan MJ; Colόn A; Angel SM; Sharma SK
    Appl Spectrosc; 2023 Dec; 77(12):1411-1423. PubMed ID: 37801484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Heterodyne Raman Spectrometer (SHRS) for In Situ Chemical Sensing Using Sapphire and Silica Optical Fiber Raman Probes.
    Ottaway JM; Allen A; Waldron A; Paul PH; Angel SM; Carter JC
    Appl Spectrosc; 2019 Oct; 73(10):1160-1171. PubMed ID: 31397584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Data processing for interferogram of spatial heterodyne spectrometer].
    Ye S; Xiong W; Qiao YL; Hong J; Fang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):848-52. PubMed ID: 19455841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design study of a cross-dispersed spatial heterodyne spectrometer.
    Chu Q; Li X; Jirigalantu ; Sun C; Chen J; Wang J; Sun Y; Bayanheshig
    Opt Express; 2022 Mar; 30(7):10547-10562. PubMed ID: 35473018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array.
    Allen A; Waldron A; Ottaway JM; Chance Carter J; Michael Angel S
    Appl Spectrosc; 2020 Aug; 74(8):921-931. PubMed ID: 32031013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.
    Barnett PD; Angel SM
    Appl Spectrosc; 2017 May; 71(5):988-995. PubMed ID: 27572631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).
    Strange KA; Paul KC; Angel SM
    Appl Spectrosc; 2017 Feb; 71(2):250-257. PubMed ID: 27364366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote Raman Sensing Using a Single-Grating Monolithic Spatial Heterodyne Raman Spectrometer: A Potential Tool for Planetary Exploration.
    Kelly EM; Egan MJ; Colόn A; Angel SM; Sharma SK
    Appl Spectrosc; 2023 May; 77(5):534-549. PubMed ID: 36223496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterodyne spectrometer sensitivity limit for quantum networking.
    Chapman JC; Peters NA
    Appl Opt; 2022 Jun; 61(17):5002-5009. PubMed ID: 36256176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a spatial heterodyne Raman spectrometer with echelle-mirror structure.
    Qiu J; Qi X; Li X; Ma Z; Jirigalantu ; Tang Y; Mi X; Zheng X; Zhang R; Bayanheshig
    Opt Express; 2018 Apr; 26(9):11994-12006. PubMed ID: 29716116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.
    Lamsal N; Angel SM
    Appl Spectrosc; 2017 Jun; 71(6):1263-1270. PubMed ID: 27876691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squeezing-enhanced heterodyne detection of 10  Hz atto-Watt optical signals.
    Xie B; Feng S
    Opt Lett; 2018 Dec; 43(24):6073-6076. PubMed ID: 30548007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the generic spatial heterodyne spectrometer and comparison with conventional spectrometer.
    Powell I; Cheben P
    Appl Opt; 2006 Dec; 45(36):9079-86. PubMed ID: 17151746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Heterodyne Offset Raman Spectroscopy Enabling Rapid, High Sensitivity Characterization of Materials' Interfaces.
    Cui H; Glidle A; Cooper JM
    Small; 2021 Jun; 17(24):e2101114. PubMed ID: 34013665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.