BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32662487)

  • 1. Comparative investigation of the thermal transport properties of Janus SnSSe and SnS
    Liu G; Wang H; Gao Z; Li GL
    Phys Chem Chem Phys; 2020 Aug; 22(29):16796-16803. PubMed ID: 32662487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Janus Asymmetry on Thermal Transport in SnSSe.
    Gupta R; Dongre B; Bera C; Carrete J
    J Phys Chem C Nanomater Interfaces; 2020 Aug; 124(32):17476-17484. PubMed ID: 32904867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first-principles and BTE investigation of phonon transport in 1T-TiSe
    Wang ZL; Chen G; Zhang X; Tang D
    Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First principles study of SnX
    Nautiyal H; Scardi P
    Nanotechnology; 2022 May; 33(32):. PubMed ID: 35504261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted Janus SnSSe monolayer: a comprehensive first-principles study.
    Guo SD; Guo XS; Han RY; Deng Y
    Phys Chem Chem Phys; 2019 Nov; 21(44):24620-24628. PubMed ID: 31670329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.
    Mohanta MK; Sarkar A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18123-18137. PubMed ID: 32223217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intrinsically low lattice thermal conductivity of monolayer T-Au
    Ji Y; Chen X; Sun Z; Shen C; Wang N
    Phys Chem Chem Phys; 2023 Nov; 25(46):31781-31790. PubMed ID: 37965932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusually low thermal conductivity of atomically thin 2D tellurium.
    Gao Z; Tao F; Ren J
    Nanoscale; 2018 Jul; 10(27):12997-13003. PubMed ID: 29786732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X; Wang G; Li B; Wang N
    Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Janus 2H-MXTe (M = Zr, Hf; X = S, Se) monolayers with outstanding thermoelectric properties and low lattice thermal conductivities.
    Lin YQ; Yang Q; Wang ZQ; Geng HY; Cheng Y
    Phys Chem Chem Phys; 2023 Nov; 25(45):31312-31325. PubMed ID: 37955953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer.
    Chen A; Tong H; Wu CW; Li SY; Jia PZ; Zhou WX
    Phys Chem Chem Phys; 2023 Dec; 26(1):421-429. PubMed ID: 38078535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX
    Zulfiqar M; Zhao Y; Li G; Li Z; Ni J
    Sci Rep; 2019 Mar; 9(1):4571. PubMed ID: 30872639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and optical properties of a Janus SnSSe monolayer: effects of strain and electric field.
    Nguyen HTT; Tuan VV; Nguyen CV; Phuc HV; Tong HD; Nguyen ST; Hieu NN
    Phys Chem Chem Phys; 2020 May; 22(20):11637-11643. PubMed ID: 32406452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS
    Shafique A; Samad A; Shin YH
    Phys Chem Chem Phys; 2017 Aug; 19(31):20677-20683. PubMed ID: 28737780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Transport Properties of Two-Dimensional Janus MoXSiN
    Gan S; Wei Q; He G; Li J; Chen X; Su G; Shen C; Wang N
    Langmuir; 2024 Jun; 40(23):12301-12312. PubMed ID: 38809168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultralow lattice thermal conductivity of binary compounds A
    Zeng S; Fang L; Tu Y; Zulfiqar M; Li G
    Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric response of Janus monolayer M2P2S3Se3 (M = Zn and Cd).
    Feng Z; Huang Y; Lin S; Yuan H; Chen H
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37503848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.