These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32662490)
1. Search for stable cocrystals of energetic materials using the evolutionary algorithm USPEX. Pakhnova M; Kruglov I; Yanilkin A; Oganov AR Phys Chem Chem Phys; 2020 Aug; 22(29):16822-16830. PubMed ID: 32662490 [TBL] [Abstract][Full Text] [Related]
2. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. Feng RZ; Zhang SH; Ren FD; Gou RJ; Gao L J Mol Model; 2016 Jun; 22(6):123. PubMed ID: 27168198 [TBL] [Abstract][Full Text] [Related]
3. Study on the effect of solvent on cocrystallization of CL-20 and HMX through theoretical calculations and experiments. Zhao X; Li J; Quan S; Fu X; Meng S; Jiang L; Fan X RSC Adv; 2022 Jul; 12(33):21255-21263. PubMed ID: 35975069 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. Hang GY; Yu WL; Wang T; Wang JT J Mol Model; 2019 Jan; 25(1):10. PubMed ID: 30603804 [TBL] [Abstract][Full Text] [Related]
5. Isothermal structural evolution of CL-20/HMX cocrystals under slow roasting at 190 °C. Liang W; Sun X; Wang H; Wang J; Sui Z; Ren H; Dai R; Zheng X; Wang Z; Duan X; Zhang Z Phys Chem Chem Phys; 2023 Jun; 25(23):15756-15766. PubMed ID: 37254560 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the Impact-Sensitivity Reduction of Energetic CL-20/TNT Cocrystals: A Nonequilibrium Molecular Dynamics Study. Wang F; Du G; Zhang C; Wang QY Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987360 [TBL] [Abstract][Full Text] [Related]
7. A Study of the Shock Sensitivity of Energetic Single Crystals by Large-Scale Ab Initio Molecular Dynamics Simulations. Zhang L; Yu Y; Xiang M Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31484358 [TBL] [Abstract][Full Text] [Related]
8. Study on the Cocrystallization Mechanism of CL-20/HMX in a Propellant Aging Process through Theoretical Calculations and Experiments. Zhao X; Fu X; Zhang G; Liu X; Fan X ACS Omega; 2022 Mar; 7(8):7361-7369. PubMed ID: 35252726 [TBL] [Abstract][Full Text] [Related]
9. Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios. Song KP; Ren FD; Zhang SH; Shi WJ J Mol Model; 2016 Oct; 22(10):249. PubMed ID: 27686560 [TBL] [Abstract][Full Text] [Related]
10. Development and Evolution of Energetic Cocrystals. Bennion JC; Matzger AJ Acc Chem Res; 2021 Apr; 54(7):1699-1710. PubMed ID: 33723995 [TBL] [Abstract][Full Text] [Related]
11. Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives. Bernstein J J Chem Phys; 2018 Feb; 148(8):084502. PubMed ID: 29495760 [TBL] [Abstract][Full Text] [Related]
12. A method for fast safety screening of explosives in terms of crystal packing and molecular stability. Hu X; Chen N; Li W J Mol Model; 2016 Jul; 22(7):170. PubMed ID: 27365051 [TBL] [Abstract][Full Text] [Related]
13. Continuous engineering of nano-cocrystals for medical and energetic applications. Spitzer D; Risse B; Schnell F; Pichot V; Klaumünzer M; Schaefer MR Sci Rep; 2014 Oct; 4():6575. PubMed ID: 25300652 [TBL] [Abstract][Full Text] [Related]
14. Decomposition mechanism scenarios of CL-20 co-crystals revealed by ReaxFF molecular dynamics: similarities and differences. Ren C; Liu H; Li X; Guo L Phys Chem Chem Phys; 2020 Feb; 22(5):2827-2840. PubMed ID: 31965130 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary crystal structure prediction as a tool in materials design. Oganov AR; Glass CW J Phys Condens Matter; 2008 Feb; 20(6):064210. PubMed ID: 21693872 [TBL] [Abstract][Full Text] [Related]
17. How evolutionary crystal structure prediction works--and why. Oganov AR; Lyakhov AO; Valle M Acc Chem Res; 2011 Mar; 44(3):227-37. PubMed ID: 21361336 [TBL] [Abstract][Full Text] [Related]
18. How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals? Bidault X; Chaudhuri S Molecules; 2023 May; 28(11):. PubMed ID: 37298947 [TBL] [Abstract][Full Text] [Related]
19. Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Zhang XQ; Yuan JN; Selvaraj G; Ji GF; Chen XR; Wei DQ Phys Chem Chem Phys; 2018 Jun; 20(25):17253-17261. PubMed ID: 29901061 [TBL] [Abstract][Full Text] [Related]
20. Stability of NNO and NPO Nanotube Crystals. An Q; Xiao H; Goddard WA; Meng X J Phys Chem Lett; 2014 Feb; 5(3):485-9. PubMed ID: 26276596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]