These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32662499)

  • 1. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications.
    Garcia R
    Chem Soc Rev; 2020 Jul; ():. PubMed ID: 32662499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Nanomechanical Mapping of Polyolefin Elastomer at Nanoscale with Atomic Force Microscopy.
    Zhang S; Weng Y; Ma C
    Nanoscale Res Lett; 2021 Jul; 16(1):113. PubMed ID: 34216298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast nanomechanical spectroscopy of soft matter.
    Herruzo ET; Perrino AP; Garcia R
    Nat Commun; 2014; 5():3126. PubMed ID: 24445593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope.
    Cartagena-Rivera AX; Wang WH; Geahlen RL; Raman A
    Sci Rep; 2015 Jun; 5():11692. PubMed ID: 26118423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomechanical sub-surface mapping of living biological cells by force microscopy.
    Stühn L; Fritschen A; Choy J; Dehnert M; Dietz C
    Nanoscale; 2019 Jul; 11(27):13089-13097. PubMed ID: 31268074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope.
    Li T; Zou Q
    Nanotechnology; 2017 Dec; 28(50):505502. PubMed ID: 29087357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.
    Ren J; Yu S; Gao N; Zou Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052711. PubMed ID: 24329300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative mapping of high modulus materials at the nanoscale: comparative study between atomic force microscopy and nanoindentation.
    Coq Germanicus R; Mercier D; Agrebi F; FÈbvre M; Mariolle D; Descamps P; LeclÈre P
    J Microsc; 2020 Jun; ():. PubMed ID: 32515496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.
    Kocun M; Labuda A; Meinhold W; Revenko I; Proksch R
    ACS Nano; 2017 Oct; 11(10):10097-10105. PubMed ID: 28953363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Visualization of the Nanomechanical Young's Modulus of Soft Materials by Atomic Force Microscopy.
    Kim S; Lee Y; Lee M; An S; Cho SJ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy.
    Raman A; Trigueros S; Cartagena A; Stevenson AP; Susilo M; Nauman E; Contera SA
    Nat Nanotechnol; 2011 Nov; 6(12):809-14. PubMed ID: 22081213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of viscoelastic characterization in multi-harmonic atomic force microscopy.
    Chandrashekar A; Givois A; Belardinelli P; Penning CL; Aragón AM; Staufer U; Alijani F
    Soft Matter; 2022 Nov; 18(46):8748-8755. PubMed ID: 36349749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy.
    Gisbert VG; Garcia R
    ACS Nano; 2021 Dec; 15(12):20574-20581. PubMed ID: 34851086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New modes for subsurface atomic force microscopy through nanomechanical coupling.
    Tetard L; Passian A; Thundat T
    Nat Nanotechnol; 2010 Feb; 5(2):105-9. PubMed ID: 20023642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced modulation of viscoelastic properties in azobenzene polymers.
    Chiodini S; Borbone F; Oscurato SL; Garcia PD; Ambrosio A
    Nanophotonics; 2024 Jan; 13(2):229-238. PubMed ID: 38283896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid broadband discrete nanomechanical mapping of soft samples on atomic force microscope.
    Wang J; Li X; Zou Q; Su C; Lin NS
    Nanotechnology; 2020 Aug; 31(33):335705. PubMed ID: 32344391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the Viscoelastic Heterogeneity at the Nanoscale in Metallic Glasses by Static Force Spectroscopy.
    Gao M; Perepezko JH
    Nano Lett; 2020 Oct; 20(10):7558-7565. PubMed ID: 32970446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy.
    Efremov YM; Cartagena-Rivera AX; Athamneh AIM; Suter DM; Raman A
    Nat Protoc; 2018 Oct; 13(10):2200-2216. PubMed ID: 30218102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.