BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

737 related articles for article (PubMed ID: 32662622)

  • 21. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO
    Cohen KY; Evans R; Dulovic S; Bocarsly AB
    Acc Chem Res; 2022 Apr; 55(7):944-954. PubMed ID: 35290017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning Reaction Pathways of Electrochemical Conversion of CO
    Yang X; Lee JH; Kattel S; Xu B; Chen JG
    Nano Lett; 2022 Jun; 22(11):4576-4582. PubMed ID: 35605250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Reduction of CO
    Qin B; Li Y; Fu H; Wang H; Chen S; Liu Z; Peng F
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20530-20539. PubMed ID: 29847915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoelectrochemical CO
    Chu S; Ou P; Ghamari P; Vanka S; Zhou B; Shih I; Song J; Mi Z
    J Am Chem Soc; 2018 Jun; 140(25):7869-7877. PubMed ID: 29905471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable Syngas Production from CO
    Chu S; Fan S; Wang Y; Rossouw D; Wang Y; Botton GA; Mi Z
    Angew Chem Int Ed Engl; 2016 Nov; 55(46):14262-14266. PubMed ID: 27739625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretically Designed Cu
    Woldu AR; Harrath K; Huang Z; Wang X; Huang XC; Astruc D; Hu L
    Small; 2024 May; 20(19):e2307862. PubMed ID: 38054770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical conversion of CO
    Nguyen DLT; Nguyen TM; Lee SY; Kim J; Kim SY; Le QV; Varma RS; Hwang YJ
    Environ Res; 2022 Aug; 211():113116. PubMed ID: 35304112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic- nitrogen rich ultrathin carbon nanosheets.
    Wei B; Hao J; Ge B; Luo W; Chen Y; Xiong Y; Li L; Shi W
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2650-2659. PubMed ID: 34774319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Electrosynthesis of Syngas with Tunable CO/H
    Meng N; Liu C; Liu Y; Yu Y; Zhang B
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):18908-18912. PubMed ID: 31664781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zn-Cu Alloy Nanofoams as Efficient Catalysts for the Reduction of CO
    Lamaison S; Wakerley D; Montero D; Rousse G; Taverna D; Giaume D; Mercier D; Blanchard J; Tran HN; Fontecave M; Mougel V
    ChemSusChem; 2019 Jan; 12(2):511-517. PubMed ID: 30637969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO
    Ross MB; Dinh CT; Li Y; Kim D; De Luna P; Sargent EH; Yang P
    J Am Chem Soc; 2017 Jul; 139(27):9359-9363. PubMed ID: 28660764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically Porous CuAg via 3D Printing/Dealloying for Tunable CO
    Yan WY; Zhang C; Liu L
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45385-45393. PubMed ID: 34519490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Doped PdH(111) Catalysts for CO
    Ai C; Vegge T; Hansen HA
    ChemSusChem; 2022 May; 15(10):e202200008. PubMed ID: 35286748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbonized wood membrane decorated with AuPd alloy nanoparticles as an efficient self-supported electrode for electrocatalytic CO
    Wang F; Zhang H; Zhang Z; Ma Q; Kong C; Min S
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):312-322. PubMed ID: 34507001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lattice-Hydride Mechanism in Electrocatalytic CO
    Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE
    J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO
    Zhang W; Qin Q; Dai L; Qin R; Zhao X; Chen X; Ou D; Chen J; Chuong TT; Wu B; Zheng N
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9475-9479. PubMed ID: 29785780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of Lattice-Dislocated Zinc Oxide via Anodic Corrosion for Electrocatalytic CO
    Qin B; Zhang Q; Li YH; Yang G; Peng F
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30466-30473. PubMed ID: 32530600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.