BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 32662756)

  • 1. The enhancement of fat oxidation during the active phase and suppression of body weight gain in glycerol-3-phosphate dehydrogenase 1 deficient mice.
    Sato T; Sayama N; Inoue M; Morita A; Miura S
    Biosci Biotechnol Biochem; 2020 Nov; 84(11):2367-2373. PubMed ID: 32662756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise.
    Sato T; Morita A; Mori N; Miura S
    Biochem Biophys Res Commun; 2015 Feb; 457(4):653-8. PubMed ID: 25603051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol-3-phosphate dehydrogenase 1 deficiency induces compensatory amino acid metabolism during fasting in mice.
    Sato T; Yoshida Y; Morita A; Mori N; Miura S
    Metabolism; 2016 Nov; 65(11):1646-1656. PubMed ID: 27733253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Arch Biochem Biophys; 2000 Dec; 384(1):143-53. PubMed ID: 11147825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing.
    Gonzalez Malagon SG; Melidoni AN; Hernandez D; Omar BA; Houseman L; Veeravalli S; Scott F; Varshavi D; Everett J; Tsuchiya Y; Timms JF; Phillips IR; Shephard EA
    Biochem Pharmacol; 2015 Aug; 96(3):267-77. PubMed ID: 26049045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mice with deletion of the mitochondrial glycerol-3-phosphate dehydrogenase gene exhibit a thrifty phenotype: effect of gender.
    Alfadda A; DosSantos RA; Stepanyan Z; Marrif H; Silva JE
    Am J Physiol Regul Integr Comp Physiol; 2004 Jul; 287(1):R147-56. PubMed ID: 15031134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase.
    Brown LJ; Koza RA; Everett C; Reitman ML; Marshall L; Fahien LA; Kozak LP; MacDonald MJ
    J Biol Chem; 2002 Sep; 277(36):32892-8. PubMed ID: 12093799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice.
    Sato T; Morita A; Mori N; Miura S
    Biochem Biophys Res Commun; 2014 Feb; 444(4):525-30. PubMed ID: 24472537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survey of normal appearing mouse strain which lacks malic enzyme and Nad+-linked glycerol phosphate dehydrogenase: normal pancreatic beta cell function, but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Mol Cell Biochem; 2001 Apr; 220(1-2):117-25. PubMed ID: 11451371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary supplementation of very long-chain n-3 fatty acids decreases whole body lipid utilization in the rat.
    Rustan AC; Hustvedt BE; Drevon CA
    J Lipid Res; 1993 Aug; 34(8):1299-309. PubMed ID: 8409764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; PĂ„hlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.
    Saheki T; Inoue K; Ono H; Katsura N; Yokogawa M; Yoshidumi Y; Furuie S; Kuroda E; Ushikai M; Asakawa A; Inui A; Eto K; Kadowaki T; Sinasac DS; Yamamura K; Kobayashi K
    Mol Genet Metab; 2012 Nov; 107(3):322-9. PubMed ID: 22921887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes.
    Cooper DE; Grevengoed TJ; Klett EL; Coleman RA
    J Biol Chem; 2015 Jun; 290(24):15112-20. PubMed ID: 25918168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fat oxidation, body composition and insulin sensitivity in diabetic and normoglycaemic obese adults 5 years after weight loss.
    Poynten AM; Markovic TP; Maclean EL; Furler SM; Freund J; Chisholm DJ; Campbell LV
    Int J Obes Relat Metab Disord; 2003 Oct; 27(10):1212-8. PubMed ID: 14513069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of genetically obese mice with the iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin reduces body weight by decreasing food intake and increasing fat oxidation.
    Langeveld M; van den Berg SA; Bijl N; Bijland S; van Roomen CP; Houben-Weerts JH; Ottenhoff R; Houten SM; van Dijk KW; Romijn JA; Groen AK; Aerts JM; Voshol PJ
    Metabolism; 2012 Jan; 61(1):99-107. PubMed ID: 21816446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous overfeeding with a 'cafeteria diet' in men: effects on 24-hour energy expenditure and substrate oxidation.
    Larson DE; Rising R; Ferraro RT; Ravussin E
    Int J Obes Relat Metab Disord; 1995 May; 19(5):331-7. PubMed ID: 7647825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.