BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32662873)

  • 1. Random epigenetic modulation of CHO cells by repeated knockdown of DNA methyltransferases increases population diversity and enables sorting of cells with higher production capacities.
    Weinguny M; Eisenhut P; Klanert G; Virgolini N; Marx N; Jonsson A; Ivansson D; Lövgren A; Borth N
    Biotechnol Bioeng; 2020 Nov; 117(11):3435-3447. PubMed ID: 32662873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA methylation in CHO cells.
    Wippermann A; Noll T
    J Biotechnol; 2017 Sep; 258():206-210. PubMed ID: 28801067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines.
    Veith N; Ziehr H; MacLeod RA; Reamon-Buettner SM
    BMC Biotechnol; 2016 Jan; 16():6. PubMed ID: 26800878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells.
    Wippermann A; Rupp O; Brinkrolf K; Hoffrogge R; Noll T
    J Biotechnol; 2015 Apr; 199():38-46. PubMed ID: 25701679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Based Targeted Epigenetic Editing Enables Gene Expression Modulation of the Silenced Beta-Galactoside Alpha-2,6-Sialyltransferase 1 in CHO Cells.
    Marx N; Grünwald-Gruber C; Bydlinski N; Dhiman H; Ngoc Nguyen L; Klanert G; Borth N
    Biotechnol J; 2018 Oct; 13(10):e1700217. PubMed ID: 29802757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Advances in epigenetic regulation of Chinese hamster ovary cells].
    Yang L; Zhang M; Zhang X; Wang X; Wang T; Jia Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Jan; 39(1):149-158. PubMed ID: 36738207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.
    Romand S; Jostock T; Fornaro M; Schmidt J; Ritter A; Wilms B; Laux H
    Biotechnol Bioeng; 2016 May; 113(5):1094-101. PubMed ID: 26523469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcloning induces changes in the DNA-methylation pattern of outgrowing Chinese hamster ovary cell colonies.
    Weinguny M; Klanert G; Eisenhut P; Lee I; Timp W; Borth N
    Biotechnol J; 2021 Jun; 16(6):e2000350. PubMed ID: 33484505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines.
    Marx N; Eisenhut P; Weinguny M; Klanert G; Borth N
    Biotechnol Adv; 2022; 56():107924. PubMed ID: 35149147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic comparison of CHO hosts and clones reveals divergent methylation and transcription patterns across lineages.
    Chang M; Kumar A; Kumar S; Huhn S; Timp W; Betenbaugh M; Du Z
    Biotechnol Bioeng; 2022 Apr; 119(4):1062-1076. PubMed ID: 35028935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells.
    Marx N; Dhiman H; Schmieder V; Freire CM; Nguyen LN; Klanert G; Borth N
    Metab Eng; 2021 Jul; 66():268-282. PubMed ID: 33965614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.
    Ritter A; Voedisch B; Wienberg J; Wilms B; Geisse S; Jostock T; Laux H
    Biotechnol Bioeng; 2016 May; 113(5):1084-93. PubMed ID: 26523402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis.
    Hilliard W; Lee KH
    Biotechnol Bioeng; 2021 Feb; 118(2):659-675. PubMed ID: 33049068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fam60A plays a role for production stabilities of recombinant CHO cell lines.
    Ritter A; Nuciforo S; Schulze A; Oertli M; Rauschert T; Voedisch B; Geisse S; Jostock T; Laux H
    Biotechnol Bioeng; 2017 Mar; 114(3):701-704. PubMed ID: 27617904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA interference of cofilin in Chinese hamster ovary cells improves recombinant protein productivity.
    Hammond S; Lee KH
    Biotechnol Bioeng; 2012 Feb; 109(2):528-35. PubMed ID: 21915848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies.
    Kim M; O'Callaghan PM; Droms KA; James DC
    Biotechnol Bioeng; 2011 Oct; 108(10):2434-46. PubMed ID: 21538334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time.
    Feichtinger J; Hernández I; Fischer C; Hanscho M; Auer N; Hackl M; Jadhav V; Baumann M; Krempl PM; Schmidl C; Farlik M; Schuster M; Merkel A; Sommer A; Heath S; Rico D; Bock C; Thallinger GG; Borth N
    Biotechnol Bioeng; 2016 Oct; 113(10):2241-53. PubMed ID: 27072894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable overexpression of miR-17 enhances recombinant protein production of CHO cells.
    Jadhav V; Hackl M; Klanert G; Hernandez Bort JA; Kunert R; Grillari J; Borth N
    J Biotechnol; 2014 Apr; 175(100):38-44. PubMed ID: 24518263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
    Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC
    Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells.
    Wippermann A; Rupp O; Brinkrolf K; Hoffrogge R; Noll T
    J Biotechnol; 2017 Sep; 257():150-161. PubMed ID: 27890772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.