BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32662891)

  • 21. Novel Insights into Phosphorus Deprivation Boosted Lipid Synthesis in the Marine Alga
    Shi Y; Liu M; Ding W; Liu J
    J Agric Food Chem; 2020 Oct; 68(41):11488-11502. PubMed ID: 32955875
    [No Abstract]   [Full Text] [Related]  

  • 22. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates.
    Pollard M; Delamarter D; Martin TM; Shachar-Hill Y
    Phytochemistry; 2015 Oct; 118():192-203. PubMed ID: 26265565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of continuous-batch mode of two-stage culture of Nannochloropsis sp. for lipid production.
    Zhang D; Xue S; Sun Z; Liang K; Wang L; Zhang Q; Cong W
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2073-82. PubMed ID: 24728965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery.
    Dong HP; Williams E; Wang DZ; Xie ZX; Hsia RC; Jenck A; Halden R; Li J; Chen F; Place AR
    Plant Physiol; 2013 Jun; 162(2):1110-26. PubMed ID: 23637339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of inorganic carbon limitation on the conversion of organic carbon to total fatty acids by Monodus subterraneus.
    Hu H; Li JY; Zhai SW; Wu DD; Zhu SG; Zeng RJ
    Sci Total Environ; 2020 Oct; 737():140275. PubMed ID: 32783858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.
    Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E
    Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.
    Racharaks R; Ge X; Li Y
    Bioresour Technol; 2015 Sep; 191():146-56. PubMed ID: 25989090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of nitrogen sources on growth density, lipid yield and eicosapentaenoic acid of Nannochloropsis oculata].
    Lu X; Zhang Q; Lu M; Dou X; Huang C; Jia J; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1865-9. PubMed ID: 24660635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid Production from Nannochloropsis.
    Ma XN; Chen TP; Yang B; Liu J; Chen F
    Mar Drugs; 2016 Mar; 14(4):. PubMed ID: 27023568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of carbon source and concentration on the growth density, lipid accumulation and fatty acid composition of Nannochloropis oculata].
    Dou X; Lu X; Lu M; Xue R; Yan R; Ji J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):358-69. PubMed ID: 23789277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate.
    Matos ÂP; Feller R; Moecke EH; Sant'Anna ES
    Bioresour Technol; 2015 Dec; 197():48-55. PubMed ID: 26318921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of glycerol deprivation on the phospholipid metabolism of a glycerol auxotroph of Staphylococcus aureus.
    Ray PH; White DC
    J Bacteriol; 1972 Feb; 109(2):668-77. PubMed ID: 5058448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp.
    Guo F; Wang H; Wang J; Zhou W; Gao L; Chen L; Dong Q; Zhang W; Liu T
    Bioresour Technol; 2014 Apr; 158():19-24. PubMed ID: 24583210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae.
    Ra CH; Kang CH; Jung JH; Jeong GT; Kim SK
    Bioresour Technol; 2016 Jul; 212():254-261. PubMed ID: 27107342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamism of Metabolic Carbon Flow of Starch and Lipids in
    Sato N; Toyoshima M
    Front Plant Sci; 2021; 12():646498. PubMed ID: 33868347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33.
    Bondioli P; Della Bella L; Rivolta G; Chini Zittelli G; Bassi N; Rodolfi L; Casini D; Prussi M; Chiaramonti D; Tredici MR
    Bioresour Technol; 2012 Jun; 114():567-72. PubMed ID: 22459965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress.
    Xiao Y; Zhang J; Cui J; Feng Y; Cui Q
    Bioresour Technol; 2013 Feb; 130():731-8. PubMed ID: 23334034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica.
    Chen JW; Liu WJ; Hu DX; Wang X; Balamurugan S; Alimujiang A; Yang WD; Liu JS; Li HY
    Biotechnol Appl Biochem; 2017 Sep; 64(5):620-626. PubMed ID: 27572053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor.
    Kang NK; Kim EK; Sung MG; Kim YU; Jeong BR; Chang YK
    Biotechnol Bioeng; 2019 Mar; 116(3):555-568. PubMed ID: 30536876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.