These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32662945)

  • 21. Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies.
    Zhao X; Collins RL; Lee WP; Weber AM; Jun Y; Zhu Q; Weisburd B; Huang Y; Audano PA; Wang H; Walker M; Lowther C; Fu J; ; Gerstein MB; Devine SE; Marschall T; Korbel JO; Eichler EE; Chaisson MJP; Lee C; Mills RE; Brand H; Talkowski ME
    Am J Hum Genet; 2021 May; 108(5):919-928. PubMed ID: 33789087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanopore Sequencing to Identify Transposable Element Insertions and Their Epigenetic Modifications.
    Smits N; Faulkner GJ
    Methods Mol Biol; 2023; 2607():151-171. PubMed ID: 36449163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.
    Kuhn A; Ong YM; Quake SR; Burkholder WF
    BMC Genomics; 2015 Jul; 16(1):508. PubMed ID: 26153459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
    Carr M; Bensasson D; Bergman CM
    PLoS One; 2012; 7(11):e50978. PubMed ID: 23226439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology.
    Zhou W; Emery SB; Flasch DA; Wang Y; Kwan KY; Kidd JM; Moran JV; Mills RE
    Nucleic Acids Res; 2020 Feb; 48(3):1146-1163. PubMed ID: 31853540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of RelocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice.
    Robb SM; Lu L; Valencia E; Burnette JM; Okumoto Y; Wessler SR; Stajich JE
    G3 (Bethesda); 2013 Jun; 3(6):949-57. PubMed ID: 23576519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Approaches to Study Somatic Transposition in Drosophila Using Whole-Genome DNA Sequencing.
    van den Beek M; Rubanova N; Siudeja K
    Methods Mol Biol; 2023; 2607():311-327. PubMed ID: 36449168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of Transposable Element Insertions in Arabidopsis Using Sequence Capture.
    Quadrana L; Silveira AB; Caillieux E; Colot V
    Methods Mol Biol; 2021; 2250():141-155. PubMed ID: 33900601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized assembly for long reads enables genome-wide analysis of repetitive regions at single-base resolution in human genomes.
    Ikemoto K; Fujimoto H; Fujimoto A
    Hum Genomics; 2023 Mar; 17(1):21. PubMed ID: 36895025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Annotation and Comparative Genomics of Prokaryotic Transposable Elements.
    Ross K; Zerillo MM; Chandler M; Varani AM
    Methods Mol Biol; 2024; 2802():189-213. PubMed ID: 38819561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Genomic Alterations Through Multilevel DNA Structural Analysis.
    Shultzaberger RK; Dresios J
    Methods Mol Biol; 2019; 1896():191-201. PubMed ID: 30474849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A unified framework to analyze transposable element insertion polymorphisms using graph genomes.
    Groza C; Chen X; Wheeler TJ; Bourque G; Goubert C
    Nat Commun; 2024 Oct; 15(1):8915. PubMed ID: 39414821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RelocaTE2: a high resolution transposable element insertion site mapping tool for population resequencing.
    Chen J; Wrightsman TR; Wessler SR; Stajich JE
    PeerJ; 2017; 5():e2942. PubMed ID: 28149701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TrEMOLO: accurate transposable element allele frequency estimation using long-read sequencing data combining assembly and mapping-based approaches.
    Mohamed M; Sabot F; Varoqui M; Mugat B; Audouin K; Pélisson A; Fiston-Lavier AS; Chambeyron S
    Genome Biol; 2023 Apr; 24(1):63. PubMed ID: 37013657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The genomic landscape of transposable elements in yeast hybrids is shaped by structural variation and genotype-specific modulation of transposition rate.
    Hénault M; Marsit S; Charron G; Landry CR
    Elife; 2024 Feb; 12():. PubMed ID: 38411604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transposable element insertions in 1000 Swedish individuals.
    Bilgrav Saether K; Nilsson D; Thonberg H; Tham E; Ameur A; Eisfeldt J; Lindstrand A
    PLoS One; 2023; 18(7):e0289346. PubMed ID: 37506127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for positive selection on recent human transposable element insertions.
    Rishishwar L; Wang L; Wang J; Yi SV; Lachance J; Jordan IK
    Gene; 2018 Oct; 675():69-79. PubMed ID: 29953920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of transposable element-associated structural variations (TASVs) using a de novo-assembled Korean genome.
    Mun S; Kim S; Lee W; Kang K; Meyer TJ; Han BG; Han K; Kim HS
    Exp Mol Med; 2021 Apr; 53(4):615-630. PubMed ID: 33833373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transposable element annotation of the rice genome.
    Juretic N; Bureau TE; Bruskiewich RM
    Bioinformatics; 2004 Jan; 20(2):155-60. PubMed ID: 14734305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.