These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32663019)

  • 1. Facile Fabrication of Slippery Lubricant-Infused CuO-Coated Surfaces with Different Morphologies for Efficient Water Collection and Excellent Slippery Stability.
    Gou X; Guo Z
    Langmuir; 2020 Aug; 36(30):8983-8992. PubMed ID: 32663019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability.
    Jing X; Guo Z
    Nanoscale; 2019 May; 11(18):8870-8881. PubMed ID: 31012900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WO
    Fan H; Guo Z
    J Colloid Interface Sci; 2021 Jun; 591():418-428. PubMed ID: 33631529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durable Lubricant-Impregnated Surfaces for Water Collection under Extremely Severe Working Conditions.
    Jing X; Guo Z
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35949-35958. PubMed ID: 31411451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically durable and long-term repairable flexible lubricant-infused monomer for enhancing water collection efficiency by manipulating droplet coalescence and sliding.
    Zhou H; Jing X; Guo Z
    Nanoscale Adv; 2020 Apr; 2(4):1473-1482. PubMed ID: 36132304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic directional slippery rough surfaces for water harvesting.
    Dai X; Sun N; Nielsen SO; Stogin BB; Wang J; Yang S; Wong TS
    Sci Adv; 2018 Mar; 4(3):eaaq0919. PubMed ID: 29670942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Fabrication of Novel Multifunctional Lubricant-Infused Surfaces with Exceptional Tribological and Anticorrosive Properties.
    Sun H; Lei F; Li T; Han H; Li B; Li D; Sun D
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6678-6687. PubMed ID: 33522787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance.
    Liu C; Li Y; Lu C; Liu Y; Feng S; Liu Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25471-25477. PubMed ID: 32379411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties.
    Li Q; Guo Z
    J Colloid Interface Sci; 2019 Feb; 536():507-515. PubMed ID: 30384056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WO
    Wang C; Yan Y; Du D; Xiong X; Ma Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29767-29777. PubMed ID: 32510196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application.
    Wang C; Guo Z
    Nanoscale; 2020 Nov; 12(44):22398-22424. PubMed ID: 33174577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Water Nucleation and Growth Based on Microdroplet Mobility on Lubricant-Infused Surfaces.
    Sun J; Jiang X; Weisensee PB
    Langmuir; 2021 Nov; 37(44):12790-12801. PubMed ID: 34699236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow.
    Yeganehdoust F; Amer A; Sharifi N; Karimfazli I; Dolatabadi A
    Langmuir; 2021 May; 37(20):6278-6291. PubMed ID: 33978432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets.
    Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J
    ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Icephobic performance of one-step silicone-oil-infused slippery coatings: Effects of surface energy, oil and nanoparticle contents.
    Cui W; Pakkanen TA
    J Colloid Interface Sci; 2020 Jan; 558():251-258. PubMed ID: 31593858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-Change Slippery Liquid-Infused Porous Surfaces with Thermo-Responsive Wetting and Shedding States.
    Gulfam R; Orejon D; Choi CH; Zhang P
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34306-34316. PubMed ID: 32597163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid manipulation
    Wang X; Bai H; Li Z; Cao M
    Soft Matter; 2023 Jan; 19(4):588-608. PubMed ID: 36633123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.