These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32663070)

  • 1. The Influence of Visual-Manual Distractions on Anticipatory Driving.
    He D; Donmez B
    Hum Factors; 2022 Mar; 64(2):401-417. PubMed ID: 32663070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipatory Driving in Automated Vehicles: The Effects of Driving Experience and Distraction.
    He D; DeGuzman CA; Donmez B
    Hum Factors; 2023 Jun; 65(4):663. PubMed ID: 34348496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eye glances towards conflict-relevant cues: the roles of anticipatory competence and driver experience.
    Stahl P; Donmez B; Jamieson GA
    Accid Anal Prev; 2019 Nov; 132():105255. PubMed ID: 31415996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supporting anticipation in driving through attentional and interpretational in-vehicle displays.
    Stahl P; Donmez B; Jamieson GA
    Accid Anal Prev; 2016 Jun; 91():103-13. PubMed ID: 26974027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of brief visual interruption tasks on drivers' ability to resume their visual search for a pre-cued hazard.
    Borowsky A; Horrey WJ; Liang Y; Garabet A; Simmons L; Fisher DL
    Accid Anal Prev; 2016 Aug; 93():207-216. PubMed ID: 27209155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glass half-full: On-road glance metrics differentiate crashes from near-crashes in the 100-Car data.
    Seppelt BD; Seaman S; Lee J; Angell LS; Mehler B; Reimer B
    Accid Anal Prev; 2017 Oct; 107():48-62. PubMed ID: 28787612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and response to critical lead vehicle deceleration events with peripheral vision: Glance response times are independent of visual eccentricity.
    Svärd M; Bärgman J; Victor T
    Accid Anal Prev; 2021 Feb; 150():105853. PubMed ID: 33310650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of visual warnings on young drivers hazard anticipation and hazard mitigation abilities.
    Hajiseyedjavadi F; Zhang T; Agrawal R; Knodler M; Fisher D; Samuel S
    Accid Anal Prev; 2018 Jul; 116():41-52. PubMed ID: 29277384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of self-regulation in the context of driver distraction: A simulator study.
    Wandtner B; Schumacher M; Schmidt EA
    Traffic Inj Prev; 2016 Jul; 17(5):472-9. PubMed ID: 27082493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of momentary visual disruption on hazard anticipation and awareness in driving.
    Borowsky A; Horrey WJ; Liang Y; Garabet A; Simmons L; Fisher DL
    Traffic Inj Prev; 2015; 16(2):133-9. PubMed ID: 24697569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How are distractibility and hazard prediction in driving related? Role of driving experience as moderating factor.
    Castro C; Padilla JL; Doncel P; Garcia-Fernandez P; Ventsislavova P; Eisman E; Crundall D
    Appl Ergon; 2019 Nov; 81():102886. PubMed ID: 31422251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drivers anticipate lead-vehicle conflicts during automated longitudinal control: Sensory cues capture driver attention and promote appropriate and timely responses.
    Morando A; Victor T; Dozza M
    Accid Anal Prev; 2016 Dec; 97():206-219. PubMed ID: 27658227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of billboards on driver visual behavior: a systematic literature review.
    Decker JS; Stannard SJ; McManus B; Wittig SM; Sisiopiku VP; Stavrinos D
    Traffic Inj Prev; 2015; 16():234-9. PubMed ID: 25000270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Distraction in On-Road Level 2 Automated Driving: Impacts on Glance Behavior and Takeover Performance.
    Yang S; Kuo J; Lenné MG
    Hum Factors; 2021 Dec; 63(8):1485-1497. PubMed ID: 32677848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driver distraction and its effects on partially automated driving performance: A driving simulator study among young-experienced drivers.
    Zangi N; Srour-Zreik R; Ridel D; Chasidim H; Borowsky A
    Accid Anal Prev; 2022 Mar; 166():106565. PubMed ID: 35032704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distractions by work-related activities: The impact of ride-hailing app and radio system on male taxi drivers.
    Chen T; Oviedo-Trespalacios O; Sze NN; Chen S
    Accid Anal Prev; 2022 Dec; 178():106849. PubMed ID: 36209681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chinese handwriting while driving: Effects of handwritten box size on in-vehicle information systems usability and driver distraction.
    Zhong Q; Guo G; Zhi J
    Traffic Inj Prev; 2023; 24(1):26-31. PubMed ID: 36178277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.