BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32663277)

  • 1. Cutting in-line with iron: ribosomal function and non-oxidative RNA cleavage.
    Guth-Metzler R; Bray MS; Frenkel-Pinter M; Suttapitugsakul S; Montllor-Albalate C; Bowman JC; Wu R; Reddi AR; Okafor CD; Glass JB; Williams LD
    Nucleic Acids Res; 2020 Sep; 48(15):8663-8674. PubMed ID: 32663277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic Iron Originates the Peptidyl Transfer Origin.
    Lin SY; Wang YC; Hsiao C
    Mol Biol Evol; 2019 May; 36(5):999-1007. PubMed ID: 30861070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation.
    Shcherbik N; Pestov DG
    Cells; 2019 Nov; 8(11):. PubMed ID: 31684095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity cleavage at the divalent metal site of porcine NAD-specific isocitrate dehydrogenase.
    Huang YC; Soundar S; Colman RF
    Protein Sci; 2000 Jan; 9(1):104-11. PubMed ID: 10739252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion probing of rRNAs: evidence for evolutionarily conserved divalent cation binding pockets.
    Polacek N; Barta A
    RNA; 1998 Oct; 4(10):1282-94. PubMed ID: 9769102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) as a cofactor before the great oxidation event.
    Okafor CD; Lanier KA; Petrov AS; Athavale SS; Bowman JC; Hud NV; Williams LD
    Nucleic Acids Res; 2017 Apr; 45(7):3634-3642. PubMed ID: 28334877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing ribosome structure by europium-induced RNA cleavage.
    Dorner S; Barta A
    Biol Chem; 1999 Feb; 380(2):243-51. PubMed ID: 10195431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions.
    Berens C; Streicher B; Schroeder R; Hillen W
    Chem Biol; 1998 Mar; 5(3):163-75. PubMed ID: 9545425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage.
    Hlavaty JJ; Benner JS; Hornstra LJ; Schildkraut I
    Biochemistry; 2000 Mar; 39(11):3097-105. PubMed ID: 10715131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holo-chromodulin: competition between the native Cr3+ and other biogenic cations (Fe3+, Fe2+, Mg2+, and Zn2+) for the binding sites.
    Kircheva N; Toshev N; Dudev T
    Metallomics; 2022 Oct; 14(10):. PubMed ID: 36220150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential binding of Mg2+, Zn2+, and Cd2+ at two sites in a hammerhead ribozyme motif, determined by 15N NMR.
    Wang G; Gaffney BL; Jones RA
    J Am Chem Soc; 2004 Jul; 126(29):8908-9. PubMed ID: 15264817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism.
    Nakano S; Cerrone AL; Bevilacqua PC
    Biochemistry; 2003 Mar; 42(10):2982-94. PubMed ID: 12627964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases.
    Lykke-Andersen J; Garrett RA; Kjems J
    EMBO J; 1997 Jun; 16(11):3272-81. PubMed ID: 9214642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.
    Klumpp K; Hang JQ; Rajendran S; Yang Y; Derosier A; Wong Kai In P; Overton H; Parkes KE; Cammack N; Martin JA
    Nucleic Acids Res; 2003 Dec; 31(23):6852-9. PubMed ID: 14627818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology modelling of human divalent metal transporter (DMT): Molecular docking and dynamic simulations for duodenal iron transport.
    Anantram A; Janve M; Degani M; Singhal R; Kundaikar H
    J Mol Graph Model; 2018 Oct; 85():145-152. PubMed ID: 30193229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular paleontology: a biochemical model of the ancestral ribosome.
    Hsiao C; Lenz TK; Peters JK; Fang PY; Schneider DM; Anderson EJ; Preeprem T; Bowman JC; O'Neill EB; Lie L; Athavale SS; Gossett JJ; Trippe C; Murray J; Petrov AS; Wartell RM; Harvey SC; Hud NV; Williams LD
    Nucleic Acids Res; 2013 Mar; 41(5):3373-85. PubMed ID: 23355613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ion catalysis of RNA cleavage by the influenza virus endonuclease.
    Doan L; Handa B; Roberts NA; Klumpp K
    Biochemistry; 1999 Apr; 38(17):5612-9. PubMed ID: 10220350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of ions and pH on the binding of virginiamycin S to ribosomes.
    Di Giambattista M; Cocito C
    Biochim Biophys Acta; 1983 May; 757(1):92-100. PubMed ID: 6404307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron.
    Honda K; Smith MA; Zhu X; Baus D; Merrick WC; Tartakoff AM; Hattier T; Harris PL; Siedlak SL; Fujioka H; Liu Q; Moreira PI; Miller FP; Nunomura A; Shimohama S; Perry G
    J Biol Chem; 2005 Jun; 280(22):20978-86. PubMed ID: 15767256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter.
    Goytain A; Quamme GA
    Physiol Genomics; 2005 Aug; 22(3):382-9. PubMed ID: 15899945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.