These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 32663632)

  • 1. Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil.
    Wan X; Lei M; Yang J; Chen T
    Environ Pollut; 2020 Nov; 266(Pt 3):115193. PubMed ID: 32663632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review.
    Dhaliwal SS; Singh J; Taneja PK; Mandal A
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1319-1333. PubMed ID: 31808078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Typha capensis for the remediation of soil contaminated with As, Hg, Cd and Pb.
    Wiafe S; Buamah R; Essandoh H; Darkwah L
    Environ Monit Assess; 2019 May; 191(6):346. PubMed ID: 31055657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediation of a metal-contaminated soil by chemical washing and repeated phytoextraction: a field experiment.
    Yu X; Zhou T; Zhao J; Dong C; Wu L; Luo Y; Christie P
    Int J Phytoremediation; 2021; 23(6):577-584. PubMed ID: 33126813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil.
    Wan X; Lei M; Chen T
    Sci Total Environ; 2016 Sep; 563-564():796-802. PubMed ID: 26765508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil.
    Kroulíková S; Mohnke S; Wenzel WW; Tejnecký V; Száková J; Mercl F; Tlustoš P
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation.
    Zeng P; Guo Z; Xiao X; Peng C; Huang B; Feng W
    Ecotoxicol Environ Saf; 2019 Mar; 169():306-315. PubMed ID: 30458397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils.
    Rajendran S; Priya TAK; Khoo KS; Hoang TKA; Ng HS; Munawaroh HSH; Karaman C; Orooji Y; Show PL
    Chemosphere; 2022 Jan; 287(Pt 4):132369. PubMed ID: 34582930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.
    Luo K; Ma T; Liu H; Wu L; Ren J; Nai F; Li R; Chen L; Luo Y; Christie P
    Int J Phytoremediation; 2015; 17(1-6):575-82. PubMed ID: 25747245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].
    Sun YB; Wang PC; Xu YM; Sun Y; Qin X; Zhao LJ; Wang L; Liang XF
    Huan Jing Ke Xue; 2014 Dec; 35(12):4720-6. PubMed ID: 25826946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Cd, Pb, and As accumulation in rice (Oryza sativa L.) by a combined amendment of calcium sulfate and ferric oxide.
    Zhai W; Zhao W; Yuan H; Guo T; Hashmi MZ; Liu X; Tang X
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1348-1358. PubMed ID: 31749009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technologies for removing heavy metal from contaminated soils on farmland: A review.
    Lin H; Wang Z; Liu C; Dong Y
    Chemosphere; 2022 Oct; 305():135457. PubMed ID: 35753427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry.
    Xu J; Liu C; Hsu PC; Zhao J; Wu T; Tang J; Liu K; Cui Y
    Nat Commun; 2019 Jun; 10(1):2440. PubMed ID: 31164649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses.
    Li Z; Wang L; Wu J; Xu Y; Wang F; Tang X; Xu J; Ok YS; Meng J; Liu X
    Environ Pollut; 2020 May; 260():114098. PubMed ID: 32041084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.
    Derakhshan Nejad Z; Jung MC; Kim KH
    Environ Geochem Health; 2018 Jun; 40(3):927-953. PubMed ID: 28447234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.
    Liao X; Li Y; Yan X
    J Environ Sci (China); 2016 Mar; 41():202-210. PubMed ID: 26969066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil.
    Cao P; Qiu K; Zou X; Lian M; Liu P; Niu L; Yu L; Li X; Zhang Z
    Environ Pollut; 2020 Nov; 266(Pt 3):115152. PubMed ID: 32702603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?
    Bolan N; Kunhikrishnan A; Thangarajan R; Kumpiene J; Park J; Makino T; Kirkham MB; Scheckel K
    J Hazard Mater; 2014 Feb; 266():141-66. PubMed ID: 24394669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.