These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Loss of calbindin-D28K is associated with the full range of tangle pathology within basal forebrain cholinergic neurons in Alzheimer's disease. Ahmadian SS; Rezvanian A; Peterson M; Weintraub S; Bigio EH; Mesulam MM; Geula C Neurobiol Aging; 2015 Dec; 36(12):3163-3170. PubMed ID: 26417681 [TBL] [Abstract][Full Text] [Related]
3. Alterations of Ca²⁺-responsive proteins within cholinergic neurons in aging and Alzheimer's disease. Riascos D; Nicholas A; Samaeekia R; Yukhananov R; Mesulam MM; Bigio EH; Weintraub S; Guo L; Geula C Neurobiol Aging; 2014 Jun; 35(6):1325-33. PubMed ID: 24461366 [TBL] [Abstract][Full Text] [Related]
4. Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Bu J; Sathyendra V; Nagykery N; Geula C Exp Neurol; 2003 Jul; 182(1):220-31. PubMed ID: 12821392 [TBL] [Abstract][Full Text] [Related]
5. Loss of calbindin-D28K from aging human cholinergic basal forebrain: relation to plaques and tangles. Geula C; Nagykery N; Wu CK; Bu J J Neuropathol Exp Neurol; 2003 Jun; 62(6):605-16. PubMed ID: 12834105 [TBL] [Abstract][Full Text] [Related]
6. Loss of calbindin-D28k from aging human cholinergic basal forebrain: relation to neuronal loss. Geula C; Bu J; Nagykery N; Scinto LF; Chan J; Joseph J; Parker R; Wu CK J Comp Neurol; 2003 Jan; 455(2):249-59. PubMed ID: 12454989 [TBL] [Abstract][Full Text] [Related]
7. Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer's disease. Riascos D; de Leon D; Baker-Nigh A; Nicholas A; Yukhananov R; Bu J; Wu CK; Geula C Acta Neuropathol; 2011 Nov; 122(5):565-76. PubMed ID: 21874328 [TBL] [Abstract][Full Text] [Related]
8. Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (Callithrix jacchus). Wu CK; Nagykery N; Hersh LB; Scinto LF; Geula C Neuroscience; 2003; 120(1):249-59. PubMed ID: 12849757 [TBL] [Abstract][Full Text] [Related]
9. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease. Mikkonen M; Alafuzoff I; Tapiola T; Soininen H; Miettinen R Neuroscience; 1999; 92(2):515-32. PubMed ID: 10408601 [TBL] [Abstract][Full Text] [Related]
10. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis. Verdaguer E; Brox S; Petrov D; Olloquequi J; Romero R; de Lemos ML; Camins A; Auladell C Exp Gerontol; 2015 Sep; 69():176-88. PubMed ID: 26099796 [TBL] [Abstract][Full Text] [Related]
11. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease. Bekdash RA Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525357 [TBL] [Abstract][Full Text] [Related]
12. Comparison of immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the striatum between young, adult and aged mice, rats and gerbils. Bae EJ; Chen BH; Shin BN; Cho JH; Kim IH; Park JH; Lee JC; Tae HJ; Choi SY; Kim JD; Lee YL; Won MH; Ahn JH Neurochem Res; 2015 Apr; 40(4):864-72. PubMed ID: 25676337 [TBL] [Abstract][Full Text] [Related]
13. Distribution of parvalbumin, calbindin and calretinin containing neurons and terminal networks in relation to sleep associated nuclei in the brain of the giant Zambian mole-rat (Fukomys mechowii). Bhagwandin A; Gravett N; Bennett NC; Manger PR J Chem Neuroanat; 2013 Sep; 52():69-79. PubMed ID: 23796985 [TBL] [Abstract][Full Text] [Related]
14. An experimental model of Braak's pretangle proposal for the origin of Alzheimer's disease: the role of locus coeruleus in early symptom development. Ghosh A; Torraville SE; Mukherjee B; Walling SG; Martin GM; Harley CW; Yuan Q Alzheimers Res Ther; 2019 Jul; 11(1):59. PubMed ID: 31266535 [TBL] [Abstract][Full Text] [Related]
15. Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer's disease. Iritani S; Niizato K; Emson PC Neuropathology; 2001 Sep; 21(3):162-7. PubMed ID: 11666012 [TBL] [Abstract][Full Text] [Related]
16. Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Grudzien A; Shaw P; Weintraub S; Bigio E; Mash DC; Mesulam MM Neurobiol Aging; 2007 Mar; 28(3):327-35. PubMed ID: 16574280 [TBL] [Abstract][Full Text] [Related]
17. Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer's disease mice. Zallo F; Gardenal E; Verkhratsky A; Rodríguez JJ Neurosci Lett; 2018 Aug; 681():19-25. PubMed ID: 29782955 [TBL] [Abstract][Full Text] [Related]
18. Roles of tau pathology in the locus coeruleus (LC) in age-associated pathophysiology and Alzheimer's disease pathogenesis: Potential strategies to protect the LC against aging. Satoh A; Iijima KM Brain Res; 2019 Jan; 1702():17-28. PubMed ID: 29274876 [TBL] [Abstract][Full Text] [Related]
19. Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer's disease. Wu CK; Thal L; Pizzo D; Hansen L; Masliah E; Geula C Exp Neurol; 2005 Oct; 195(2):484-96. PubMed ID: 16085017 [TBL] [Abstract][Full Text] [Related]
20. Subfield and layer-specific depletion in calbindin-D28K, calretinin and parvalbumin immunoreactivity in the dentate gyrus of amyloid precursor protein/presenilin 1 transgenic mice. Popović M; Caballero-Bleda M; Kadish I; Van Groen T Neuroscience; 2008 Jul; 155(1):182-91. PubMed ID: 18583063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]