These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 32663798)
21. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
22. Deep gray matter changes in relapsing-remitting multiple sclerosis detected by multi-parametric, high-resolution magnetic resonance imaging (MRI). Al-Radaideh A; Athamneh I; Alabadi H; Hbahbih M Eur Radiol; 2021 Feb; 31(2):706-715. PubMed ID: 32851443 [TBL] [Abstract][Full Text] [Related]
23. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562 [TBL] [Abstract][Full Text] [Related]
24. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Essa E; Aldesouky D; Hussein SE; Rashad MZ Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214 [TBL] [Abstract][Full Text] [Related]
25. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667 [TBL] [Abstract][Full Text] [Related]
26. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis. Gabr RE; Pednekar AS; Govindarajan KA; Sun X; Riascos RF; Ramírez MG; Hasan KM; Lincoln JA; Nelson F; Wolinsky JS; Narayana PA J Magn Reson Imaging; 2017 Aug; 46(2):557-564. PubMed ID: 27869333 [TBL] [Abstract][Full Text] [Related]
27. Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions. Arnold TC; Tu D; Okar SV; Nair G; By S; Kawatra KD; Robert-Fitzgerald TE; Desiderio LM; Schindler MK; Shinohara RT; Reich DS; Stein JM Neuroimage Clin; 2022; 35():103101. PubMed ID: 35792417 [TBL] [Abstract][Full Text] [Related]
28. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Granberg T; Fan Q; Treaba CA; Ouellette R; Herranz E; Mangeat G; Louapre C; Cohen-Adad J; Klawiter EC; Sloane JA; Mainero C Brain; 2017 Nov; 140(11):2912-2926. PubMed ID: 29053798 [TBL] [Abstract][Full Text] [Related]
29. Comparison of Multiple Sclerosis Cortical Lesion Types Detected by Multicontrast 3T and 7T MRI. Maranzano J; Dadar M; Rudko DA; De Nigris D; Elliott C; Gati JS; Morrow SA; Menon RS; Collins DL; Arnold DL; Narayanan S AJNR Am J Neuroradiol; 2019 Jul; 40(7):1162-1169. PubMed ID: 31221631 [TBL] [Abstract][Full Text] [Related]
30. 7T MPFLAIR versus MP2RAGE for Quantifying Lesion Volume in Multiple Sclerosis. Spini M; Choi S; Harrison DM J Neuroimaging; 2020 Jul; 30(4):531-536. PubMed ID: 32569408 [TBL] [Abstract][Full Text] [Related]
31. Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging. Lou C; Sati P; Absinta M; Clark K; Dworkin JD; Valcarcel AM; Schindler MK; Reich DS; Sweeney EM; Shinohara RT Neuroimage Clin; 2021; 32():102796. PubMed ID: 34644666 [TBL] [Abstract][Full Text] [Related]
32. Cortical and Subcortical Morphometric and Iron Changes in Relapsing-Remitting Multiple Sclerosis and Their Association with White Matter T2 Lesion Load : A 3-Tesla Magnetic Resonance Imaging Study. Al-Radaideh A; Athamneh I; Alabadi H; Hbahbih M Clin Neuroradiol; 2019 Mar; 29(1):51-64. PubMed ID: 29299614 [TBL] [Abstract][Full Text] [Related]
34. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Geurts JJ; Pouwels PJ; Uitdehaag BM; Polman CH; Barkhof F; Castelijns JA Radiology; 2005 Jul; 236(1):254-60. PubMed ID: 15987979 [TBL] [Abstract][Full Text] [Related]
35. [Evaluation of Improvement of Tissue Contrast and Reduction of Imaging Time by Shortening TR in Brain T Ikeguchi H; Shonai T; Watanabe T; Nawate M; Yano R Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(12):1256-1265. PubMed ID: 33342944 [TBL] [Abstract][Full Text] [Related]
36. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. de Sitter A; Steenwijk MD; Ruet A; Versteeg A; Liu Y; van Schijndel RA; Pouwels PJW; Kilsdonk ID; Cover KS; van Dijk BW; Ropele S; Rocca MA; Yiannakas M; Wattjes MP; Damangir S; Frisoni GB; Sastre-Garriga J; Rovira A; Enzinger C; Filippi M; Frederiksen J; Ciccarelli O; Kappos L; Barkhof F; Vrenken H; Neuroimage; 2017 Dec; 163():106-114. PubMed ID: 28899746 [TBL] [Abstract][Full Text] [Related]
37. Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks. Krüger J; Ostwaldt AC; Spies L; Geisler B; Schlaefer A; Kitzler HH; Schippling S; Opfer R Eur Radiol; 2022 Apr; 32(4):2798-2809. PubMed ID: 34643779 [TBL] [Abstract][Full Text] [Related]