These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32664234)
1. Wavefront Aberration Sensor Based on a Multichannel Diffractive Optical Element. Khonina SN; Karpeev SV; Porfirev AP Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664234 [TBL] [Abstract][Full Text] [Related]
2. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials. Rahbar K; Faez K; Attaran Kakhki E J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854 [TBL] [Abstract][Full Text] [Related]
3. Zernike monomials in wide field of view optical designs. Johnson TP; Sasian J Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327 [TBL] [Abstract][Full Text] [Related]
4. Laboratory study of aberration calculation in underwater turbulence using Shack-Hartmann wavefront sensor and Zernike polynomials. Aghajani A; Kashani FD; Yousefi M Opt Express; 2024 Apr; 32(9):15978-15992. PubMed ID: 38859236 [TBL] [Abstract][Full Text] [Related]
5. Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing. Houzet J; Faure N; Larochette M; Brulez AC; Benayoun S; Mauclair C Opt Express; 2016 Mar; 24(6):6542-52. PubMed ID: 27136844 [TBL] [Abstract][Full Text] [Related]
6. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
7. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
8. Phase modulators with tunability in wavefronts and optical axes originating from anisotropic molecular tilts under symmetric electric field II: experiments. Wang YJ; Lin YH; Cakmakci O; Reshetnyak V Opt Express; 2020 Mar; 28(6):8985-9001. PubMed ID: 32225513 [TBL] [Abstract][Full Text] [Related]
9. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers. Jeong TM; Ko DK; Lee J Opt Lett; 2007 Feb; 32(3):232-4. PubMed ID: 17215929 [TBL] [Abstract][Full Text] [Related]
10. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related]
11. Wavefront Characteristics of a Digital Holographic Optical Element. Lee BR; Marichal-Hernández JG; Rodríguez-Ramos JM; Son WH; Hong S; Son JY Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374814 [TBL] [Abstract][Full Text] [Related]
12. Wavefront aberrations of x-ray dynamical diffraction beams. Liao K; Hong Y; Sheng W Appl Opt; 2014 Oct; 53(28):6362-70. PubMed ID: 25322219 [TBL] [Abstract][Full Text] [Related]
13. Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks. Goi E; Schoenhardt S; Gu M Nat Commun; 2022 Dec; 13(1):7531. PubMed ID: 36476752 [TBL] [Abstract][Full Text] [Related]
15. Integrated diffractive shearing interferometry for adaptive wavefront sensing. Karp JH; Chan TK; Ford JE Appl Opt; 2008 Dec; 47(35):6666-74. PubMed ID: 19079478 [TBL] [Abstract][Full Text] [Related]
16. Aberration production using a high-resolution liquid-crystal spatial light modulator. Schmidt JD; Goda ME; Duncan BD Appl Opt; 2007 May; 46(13):2423-33. PubMed ID: 17429453 [TBL] [Abstract][Full Text] [Related]
17. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. Lombardo M; Lombardo G J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616 [TBL] [Abstract][Full Text] [Related]