BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 32664256)

  • 1. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery.
    Auriemma G; Russo P; Del Gaudio P; García-González CA; Landín M; Aquino RP
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32664256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying.
    Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP
    J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics.
    Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polysaccharide hydrogels for modified release formulations.
    Coviello T; Matricardi P; Marianecci C; Alhaique F
    J Control Release; 2007 May; 119(1):5-24. PubMed ID: 17382422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity.
    Borisova A; De Bruyn M; Budarin VL; Shuttleworth PS; Dodson JR; Segatto ML; Clark JH
    Macromol Rapid Commun; 2015 Apr; 36(8):774-9. PubMed ID: 25721151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-glucan and arabinogalactan-based xerogels for abuse-deterrent opioid formulations.
    Veverka M; Dubaj T; Veverková E; Šimon P; Husár Š; Tomanová K; Jorík V
    Eur J Pharm Sci; 2019 Mar; 129():132-139. PubMed ID: 30625367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel carboxymethylcellulose-based microporous hydrogels suitable for drug delivery.
    Barbucci R; Leone G; Vecchiullo A
    J Biomater Sci Polym Ed; 2004; 15(5):607-19. PubMed ID: 15264662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
    Valo H; Arola S; Laaksonen P; Torkkeli M; Peltonen L; Linder MB; Serimaa R; Kuga S; Hirvonen J; Laaksonen T
    Eur J Pharm Sci; 2013 Sep; 50(1):69-77. PubMed ID: 23500041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles.
    Obaidat RM; Tashtoush BM; Bayan MF; Al Bustami RT; Alnaief M
    AAPS PharmSciTech; 2015 Dec; 16(6):1235-44. PubMed ID: 25761387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering silica particles as oral drug delivery vehicles.
    Rigby SP; Fairhead M; van der Walle CF
    Curr Pharm Des; 2008; 14(18):1821-31. PubMed ID: 18673185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications.
    Thambi T; Phan VH; Lee DS
    Macromol Rapid Commun; 2016 Dec; 37(23):1881-1896. PubMed ID: 27753168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable and Self-Healing Hydrogels with Double-Dynamic Bond Tunable Mechanical, Gel-Sol Transition and Drug Delivery Properties for Promoting Periodontium Regeneration in Periodontitis.
    Guo H; Huang S; Yang X; Wu J; Kirk TB; Xu J; Xu A; Xue W
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61638-61652. PubMed ID: 34908393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polysaccharide-Based Nanocarriers for Ocular Drug Delivery.
    Formica ML; Calles JA; Palma SD
    Curr Pharm Des; 2015; 21(33):4851-68. PubMed ID: 26290208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery.
    Xu X; Weng Y; Xu L; Chen H
    Int J Biol Macromol; 2013 Sep; 60():272-6. PubMed ID: 23748006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular imprinting within hydrogels II: progress and analysis of the field.
    Byrne ME; Salian V
    Int J Pharm; 2008 Dec; 364(2):188-212. PubMed ID: 18824226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ionic and non-ionic drug release from multi-membrane spherical aerogels.
    Veronovski A; Knez Z; Novak Z
    Int J Pharm; 2013 Sep; 454(1):58-66. PubMed ID: 23850813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surfactants on the release behaviour and structural properties of sol-gel derived silica xerogels embedded with metronidazole.
    Czarnobaj K; Sawicki W
    Pharm Dev Technol; 2013; 18(2):377-83. PubMed ID: 22107265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.