BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32664260)

  • 1. Effect of Auxin (IAA) on the Fast Vacuolar (FV) Channels in Red Beet (
    Burdach Z; Siemieniuk A; Karcz W
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of the Effect of Lead (Pb) on the Slow Vacuolar (SV) and Fast Vacuolar (FV) Channels in Red Beet (
    Siemieniuk A; Burdach Z; Karcz W
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of auxin (IAA) in the regulation of slow vacuolar (SV) channels and the volume of red beet taproot vacuoles.
    Burdach Z; Siemieniuk A; Trela Z; Kurtyka R; Karcz W
    BMC Plant Biol; 2018 Jun; 18(1):102. PubMed ID: 29866031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
    Allen GJ; Sanders D
    Plant J; 1996 Dec; 10(6):1055-69. PubMed ID: 9011087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium.
    Pottosin II; Martínez-Estévez M
    Biophys J; 2003 Feb; 84(2 Pt 1):977-86. PubMed ID: 12547779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Trimethyltin Chloride on Slow Vacuolar (SV) Channels in Vacuoles from Red Beet (Beta vulgaris L.) Taproots.
    Trela Z; Burdach Z; Siemieniuk A; Przestalski S; Karcz W
    PLoS One; 2015; 10(8):e0136346. PubMed ID: 26317868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation-permeable vacuolar ion channels in the moss Physcomitrella patens: a patch-clamp study.
    Koselski M; Trebacz K; Dziubinska H
    Planta; 2013 Aug; 238(2):357-67. PubMed ID: 23716185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the slow vacuolar channel by luminal potassium: role of surface charge.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J
    J Membr Biol; 2005 May; 205(2):103-11. PubMed ID: 16283590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifractal Analysis of the Influence of Indole-3-Acetic Acid on Fast-Activating Vacuolar (FV) Channels of
    Miśkiewicz J; Burdach Z; Trela Z; Siemieniuk A; Karcz W
    Membranes (Basel); 2023 Apr; 13(4):. PubMed ID: 37103833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.
    Trela Z; Burdach Z; Przestalski S; Karcz W
    C R Biol; 2012 Dec; 335(12):722-30. PubMed ID: 23312295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J; Schönknecht G
    Planta; 2004 Oct; 219(6):1057-70. PubMed ID: 15605179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport.
    Pottosin I; Dobrovinskaya O
    J Plant Physiol; 2014 May; 171(9):732-42. PubMed ID: 24560436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium-selective channel in the red beet vacuolar membrane.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J
    J Exp Bot; 2003 Feb; 54(383):663-7. PubMed ID: 12554709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin.
    Blatt MR; Thiel G
    Plant J; 1994 Jan; 5(1):55-68. PubMed ID: 8130798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors.
    Koselski M; Trebacz K; Dziubinska H
    Planta; 2017 May; 245(5):1049-1060. PubMed ID: 28197715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ.
    Pérez V; Wherrett T; Shabala S; Muñiz J; Dobrovinskaya O; Pottosin I
    J Exp Bot; 2008; 59(14):3845-55. PubMed ID: 18832189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuolar chloride regulation of an anion-selective tonoplast channel.
    Plant PJ; Gelli A; Blumwald E
    J Membr Biol; 1994 May; 140(1):1-12. PubMed ID: 7519678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels.
    Ivashikina N; Hedrich R
    Plant J; 2005 Feb; 41(4):606-14. PubMed ID: 15686523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction of monovalent and divalent cations in the slow vacuolar channel.
    Pottosin II; Dobrovinskaya OR; Muñiz J
    J Membr Biol; 2001 May; 181(1):55-65. PubMed ID: 11331938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers.
    Pantoja O; Smith JA
    J Membr Biol; 2002 Mar; 186(1):31-42. PubMed ID: 11891587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.