These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32664281)

  • 1. Properties of Cu-xFe
    Predescu AM; Vidu R; Vizureanu P; Predescu A; Matei E; Predescu C
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural Characterization of Al/CNTs Nanocomposites after Cold Rolling.
    Carneiro Í; Fernandes JV; Simões S
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of tribo-mechanical measurements and thermal expansion of Cu-based nanocomposites reinforced by high strength hybrid ceramics.
    Zaki MZ; El-Zaidia MM; Abomostafa HM; Taha MA
    Sci Rep; 2024 Jul; 14(1):17479. PubMed ID: 39080290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of Ti-12Mo/xAl
    Yehia HM; El-Tantawy A; Elkady OA; Ghayad IM; Daoush WM
    Front Bioeng Biotechnol; 2024; 12():1412586. PubMed ID: 39081331
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis of Cu-W nanocomposite by high-energy ball milling.
    Venugopal T; Rao KP; Murty BS
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2376-81. PubMed ID: 17663255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.
    Joshi PB; Rehani B; Naik P; Patel S; Khanna PK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2591-7. PubMed ID: 22755095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure, Mechanical Properties, and Corrosion Behavior of Boron Carbide Reinforced Aluminum Alloy (Al-Fe-Si-Zn-Cu) Matrix Composites Produced via Powder Metallurgy Route.
    Meignanamoorthy M; Ravichandran M; Mohanavel V; Afzal A; Sathish T; Alamri S; Khan SA; Saleel CA
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Intermetallic Compounds on the Thermal and Mechanical Properties of Al⁻Cu Composite Materials Fabricated by Spark Plasma Sintering.
    Kim K; Kim D; Park K; Cho M; Cho S; Kwon H
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive study of Al-Cu-Mg system reinforced with nano-ZrO
    Moustafa EB; Aljabri A; Abushanab WS; Ghandourah E; Taha MA; Khoshaim AB; Youness RA; Mohamed SS
    Sci Rep; 2024 Feb; 14(1):2862. PubMed ID: 38311645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of Lubricant Type on the Densification Behavior and Final Powder Compact Properties of Cu-Fe Alloy under Different Compaction Pressures.
    Korim NS; Elsayed A; Hu L
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.
    Saheb N; Aliyu IK; Hassan SF; Al-Aqeeli N
    Materials (Basel); 2014 Sep; 7(9):6748-6767. PubMed ID: 28788210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Powder Milling on Properties of SPS Compacted FeAl.
    Michalcová A; Özkan M; Mikula P; Marek I; Knaislová A; Kopeček J; Vojtěch D
    Molecules; 2020 May; 25(9):. PubMed ID: 32403351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys.
    Montealegre-Meléndez I; Arévalo C; Perez-Soriano EM; Neubauer E; Rubio-Escudero C; Kitzmantel M
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Workability Behavior of Cu-X wt.% TiC (
    Mohanavel V; Ravichandran M; Ashraff Ali KS; Sathish T; Karthick A; Arungalai Vendan S; Velmurugan P; Salmen SH; Alfarraj S; Sivakumar S; Gebrekidan AM
    Bioinorg Chem Appl; 2022; 2022():8101680. PubMed ID: 35637640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of alumina-based metal nanocomposites by pressureless sintering and their mechanical properties.
    Oh ST; Lee SI
    J Nanosci Nanotechnol; 2010 Jan; 10(1):366-9. PubMed ID: 20352863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiN-Nanoparticulate-Reinforced ZrO
    Lazar A; Kosmač T; Zavašnik J; Abram A; Kocjan A
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive studies for evaluating promising properties of Cu/graphene/fly ash nanocomposites.
    El-Zaidia MM; Zaki MZ; Abomostafa HM; Taha MA
    Sci Rep; 2024 Jan; 14(1):2236. PubMed ID: 38278959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Formation Behaviour of Al-Cu Intermetallic Compounds in Al-50vol%Cu Composites Prepared by Spark Plasma Sintering under High Pressure.
    Kim D; Kim K; Kwon H
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of milling time on the preparation of an aluminum matrix composite reinforced with magnetic nanoparticles.
    Elsayd A; Shash AY; Mattar H; Löthman PA; Mitwally ME
    Heliyon; 2023 Jun; 9(6):e16887. PubMed ID: 37313166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets.
    Mahmood S; Iqbal A; Rafi-Ud-Din ; Wadood A; Mateen A; Amin M; Yahia IS; Zahran HY
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.