BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32664530)

  • 1. Formation of Aberrant Myotubes by Myoblasts Lacking Myosin VI Is Associated with Alterations in the Cytoskeleton Organization, Myoblast Adhesion and Fusion.
    Lehka L; Topolewska M; Wojton D; Karatsai O; Alvarez-Suarez P; Pomorski P; Rędowicz MJ
    Cells; 2020 Jul; 9(7):. PubMed ID: 32664530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of unconventional myosin VI in myoblast function and myotube formation.
    Karolczak J; Pavlyk I; Majewski Ł; Sobczak M; Niewiadomski P; Rzhepetskyy Y; Sikorska A; Nowak N; Pomorski P; Prószyński T; Ehler E; Rędowicz MJ
    Histochem Cell Biol; 2015 Jul; 144(1):21-38. PubMed ID: 25896210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH Oxidase 4 Contributes to Myoblast Fusion and Skeletal Muscle Regeneration.
    Youm TH; Woo SH; Kwon ES; Park SS
    Oxid Med Cell Longev; 2019; 2019():3585390. PubMed ID: 31827673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase.
    Madaro L; Marrocco V; Fiore P; Aulino P; Smeriglio P; Adamo S; Molinaro M; Bouché M
    Mol Biol Cell; 2011 Apr; 22(8):1409-19. PubMed ID: 21346196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Kinase Anchoring Protein 9 Is a Novel Myosin VI Binding Partner That Links Myosin VI with the PKA Pathway in Myogenic Cells.
    Karolczak J; Sobczak M; Skowronek K; Rędowicz MJ
    Biomed Res Int; 2015; 2015():816019. PubMed ID: 25961040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization.
    Dedieu S; Poussard S; Mazères G; Grise F; Dargelos E; Cottin P; Brustis JJ
    Exp Cell Res; 2004 Jan; 292(1):187-200. PubMed ID: 14720518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Molecular regulation mechanism of
    Zhu Y; Zhang JW; Qi J; Li XW; Chen L; Li MZ; Ma JD
    Yi Chuan; 2019 Dec; 41(12):1110-1118. PubMed ID: 31857282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myomaker and Myomerger Work Independently to Control Distinct Steps of Membrane Remodeling during Myoblast Fusion.
    Leikina E; Gamage DG; Prasad V; Goykhberg J; Crowe M; Diao J; Kozlov MM; Chernomordik LV; Millay DP
    Dev Cell; 2018 Sep; 46(6):767-780.e7. PubMed ID: 30197239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration.
    Chen B; You W; Wang Y; Shan T
    Cell Mol Life Sci; 2020 Apr; 77(8):1551-1569. PubMed ID: 31642939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-4 Signaling Promotes Myoblast Differentiation and Fusion by Enhancing the Expression of MyoD, Myogenin, and Myomerger.
    Kurosaka M; Hung YL; Machida S; Kohda K
    Cells; 2023 Apr; 12(9):. PubMed ID: 37174683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion.
    Quach NL; Biressi S; Reichardt LF; Keller C; Rando TA
    Mol Biol Cell; 2009 Jul; 20(14):3422-35. PubMed ID: 19458188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation.
    Dhawan J; Helfman DM
    J Cell Sci; 2004 Aug; 117(Pt 17):3735-48. PubMed ID: 15252113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myomaker is a membrane activator of myoblast fusion and muscle formation.
    Millay DP; O'Rourke JR; Sutherland LB; Bezprozvannaya S; Shelton JM; Bassel-Duby R; Olson EN
    Nature; 2013 Jul; 499(7458):301-5. PubMed ID: 23868259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.
    van der Meijden K; Bravenboer N; Dirks NF; Heijboer AC; den Heijer M; de Wit GM; Offringa C; Lips P; Jaspers RT
    J Cell Physiol; 2016 Nov; 231(11):2517-28. PubMed ID: 27018098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.
    Pizza FX; Martin RA; Springer EM; Leffler MS; Woelmer BR; Recker IJ; Leaman DW
    Sci Rep; 2017 Jul; 7(1):5094. PubMed ID: 28698658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development.
    Quinn ME; Goh Q; Kurosaka M; Gamage DG; Petrany MJ; Prasad V; Millay DP
    Nat Commun; 2017 Jun; 8():15665. PubMed ID: 28569755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival motor neuron deficiency slows myoblast fusion through reduced myomaker and myomixer expression.
    McCormack NM; Villalón E; Viollet C; Soltis AR; Dalgard CL; Lorson CL; Burnett BG
    J Cachexia Sarcopenia Muscle; 2021 Aug; 12(4):1098-1116. PubMed ID: 34115448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filopodia powered by class x myosin promote fusion of mammalian myoblasts.
    Hammers DW; Hart CC; Matheny MK; Heimsath EG; Lee YI; Hammer JA; Cheney RE; Sweeney HL
    Elife; 2021 Sep; 10():. PubMed ID: 34519272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of muscle formation by the fusogenic micropeptide myomixer.
    Bi P; Ramirez-Martinez A; Li H; Cannavino J; McAnally JR; Shelton JM; Sánchez-Ortiz E; Bassel-Duby R; Olson EN
    Science; 2017 Apr; 356(6335):323-327. PubMed ID: 28386024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.