BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32665418)

  • 1. Absorption, Distribution, Metabolism, and Excretion of Capmatinib (INC280) in Healthy Male Volunteers and In Vitro Aldehyde Oxidase Phenotyping of the Major Metabolite.
    Glaenzel U; Jin Y; Hansen R; Schroer K; Rahmanzadeh G; Pfaar U; Jaap van Lier J; Borell H; Meissner A; Camenisch G; Zhao S
    Drug Metab Dispos; 2020 Oct; 48(10):873-885. PubMed ID: 32665418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism and Disposition of Siponimod, a Novel Selective S1P
    Glaenzel U; Jin Y; Nufer R; Li W; Schroer K; Adam-Stitah S; Peter van Marle S; Legangneux E; Borell H; James AD; Meissner A; Camenisch G; Gardin A
    Drug Metab Dispos; 2018 Jul; 46(7):1001-1013. PubMed ID: 29735753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption, Metabolism, Excretion, and the Contribution of Intestinal Metabolism to the Oral Disposition of [14C]Cobimetinib, a MEK Inhibitor, in Humans.
    Takahashi RH; Choo EF; Ma S; Wong S; Halladay J; Deng Y; Rooney I; Gates M; Hop CE; Khojasteh SC; Dresser MJ; Musib L
    Drug Metab Dispos; 2016 Jan; 44(1):28-39. PubMed ID: 26451002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excretion, Mass Balance, and Metabolism of [
    Katyayan K; Yi P; Monk S; Cassidy K
    Drug Metab Dispos; 2020 Aug; 48(8):698-707. PubMed ID: 32499340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase I dose-escalation study of capmatinib (INC280) in Japanese patients with advanced solid tumors.
    Esaki T; Hirai F; Makiyama A; Seto T; Bando H; Naito Y; Yoh K; Ishihara K; Kakizume T; Natsume K; Myers A; Doi T
    Cancer Sci; 2019 Apr; 110(4):1340-1351. PubMed ID: 30724423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phase 1b study of the MET inhibitor capmatinib combined with cetuximab in patients with MET-positive colorectal cancer who had progressed following anti-EGFR monoclonal antibody treatment.
    Delord JP; Argilés G; Fayette J; Wirth L; Kasper S; Siena S; Mesia R; Berardi R; Cervantes A; Dekervel J; Zhao S; Sun Y; Hao HX; Tiedt R; Vicente S; Myers A; Siu LL
    Invest New Drugs; 2020 Dec; 38(6):1774-1783. PubMed ID: 32410080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption, metabolism, and excretion of [
    Ye YE; Woodward CN; Narasimhan NI
    Cancer Chemother Pharmacol; 2017 Mar; 79(3):507-518. PubMed ID: 28184964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption, metabolism, and excretion of oral ¹⁴C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men.
    Scheers E; Leclercq L; de Jong J; Bode N; Bockx M; Laenen A; Cuyckens F; Skee D; Murphy J; Sukbuntherng J; Mannens G
    Drug Metab Dispos; 2015 Feb; 43(2):289-97. PubMed ID: 25488930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans.
    Podoll T; Pearson PG; Evarts J; Ingallinera T; Bibikova E; Sun H; Gohdes M; Cardinal K; Sanghvi M; Slatter JG
    Drug Metab Dispos; 2019 Feb; 47(2):145-154. PubMed ID: 30442651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Metabolism by Aldehyde Oxidase Leads to Poor Pharmacokinetic Profile in Rats for c-Met Inhibitor MET401.
    Zhang JW; Deng HB; Zhang CY; Dai JQ; Li Q; Zheng QG; Wan HX; Yu HP; He F; Xu YC; Zhao S; Zhang JYJ
    Eur J Drug Metab Pharmacokinet; 2019 Oct; 44(5):669-680. PubMed ID: 31030415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38alpha inhibitor: identification of an active metabolite in preclinical species and human liver microsomes.
    Kalgutkar AS; Hatch HL; Kosea F; Nguyen HT; Choo EF; McClure KF; Taylor TJ; Henne KR; Kuperman AV; Dombroski MA; Letavic MA
    Biopharm Drug Dispos; 2006 Nov; 27(8):371-86. PubMed ID: 16944451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Ib/II Study of Capmatinib (INC280) Plus Gefitinib After Failure of Epidermal Growth Factor Receptor (EGFR) Inhibitor Therapy in Patients With EGFR-Mutated, MET Factor-Dysregulated Non-Small-Cell Lung Cancer.
    Wu YL; Zhang L; Kim DW; Liu X; Lee DH; Yang JC; Ahn MJ; Vansteenkiste JF; Su WC; Felip E; Chia V; Glaser S; Pultar P; Zhao S; Peng B; Akimov M; Tan DSW
    J Clin Oncol; 2018 Nov; 36(31):3101-3109. PubMed ID: 30156984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo metabolism of a selective δ-opioid receptor.
    Guo J; Gu C; Zhou D; Elmore CS; Bui KH; Grimm SW
    Drug Metab Dispos; 2011 Oct; 39(10):1883-94. PubMed ID: 21752944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism and excretion of anacetrapib, a novel inhibitor of the cholesteryl ester transfer protein, in humans.
    Kumar S; Tan EY; Hartmann G; Biddle Z; Bergman AJ; Dru J; Ho JZ; Jones AN; Staskiewicz SJ; Braun MP; Karanam B; Dean DC; Gendrano IN; Graves MW; Wagner JA; Krishna R
    Drug Metab Dispos; 2010 Mar; 38(3):474-83. PubMed ID: 20016053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revefenacin Absorption, Metabolism, and Excretion in Healthy Subjects and Pharmacological Activity of Its Major Metabolite.
    Bourdet DL; Yeola S; Hegde SS; Colson PJ; Barnes CN; Borin MT
    Drug Metab Dispos; 2020 Dec; 48(12):1312-1320. PubMed ID: 32978223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase 1 study of capmatinib in MET-positive solid tumor patients: Dose escalation and expansion of selected cohorts.
    Bang YJ; Su WC; Schuler M; Nam DH; Lim WT; Bauer TM; Azaro A; Poon RTP; Hong D; Lin CC; Akimov M; Ghebremariam S; Zhao S; Giovannini M; Ma B
    Cancer Sci; 2020 Feb; 111(2):536-547. PubMed ID: 31778267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacokinetics of capmatinib in participants with hepatic impairment: A phase 1, open-label, single-dose, parallel-group study.
    Chen X; Cui X; Pognan N; Quinlan M; Kapoor S; Rahmanzadeh G; Giovannini M; Marbury TC
    Br J Clin Pharmacol; 2022 Jan; 88(1):91-102. PubMed ID: 34046915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass Balance and Metabolic Pathways of Eliapixant, a P2X3 Receptor Antagonist, in Healthy Male Volunteers.
    Reif S; Schultze-Mosgau MH; Engelen A; Piel I; Denner K; Roffel A; Tiessen R; Klein S; Francke K; Rottmann A
    Eur J Drug Metab Pharmacokinet; 2024 Jan; 49(1):71-85. PubMed ID: 38044419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of aldehyde oxidase and xanthine oxidase in the biotransformation of a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5.
    Morrison RD; Blobaum AL; Byers FW; Santomango TS; Bridges TM; Stec D; Brewer KA; Sanchez-Ponce R; Corlew MM; Rush R; Felts AS; Manka J; Bates BS; Venable DF; Rodriguez AL; Jones CK; Niswender CM; Conn PJ; Lindsley CW; Emmitte KA; Daniels JS
    Drug Metab Dispos; 2012 Sep; 40(9):1834-45. PubMed ID: 22711749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Molybdenum-Containing Enzymes in the Biotransformation of the Novel Ghrelin Receptor Inverse Agonist PF-5190457: A Reverse Translational Bed-to-Bench Approach.
    Adusumalli S; Jamwal R; Obach RS; Ryder TF; Leggio L; Akhlaghi F
    Drug Metab Dispos; 2019 Aug; 47(8):874-882. PubMed ID: 31182423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.