BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 32665651)

  • 1. Structural variability, coordination and adaptation of a native photosynthetic machinery.
    Zhao LS; Huokko T; Wilson S; Simpson DM; Wang Q; Ruban AV; Mullineaux CW; Zhang YZ; Liu LN
    Nat Plants; 2020 Jul; 6(7):869-882. PubMed ID: 32665651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium.
    Zhao LS; Li CY; Chen XL; Wang Q; Zhang YZ; Liu LN
    Plant Physiol; 2022 Oct; 190(3):1883-1895. PubMed ID: 35947692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery.
    Casella S; Huang F; Mason D; Zhao GY; Johnson GN; Mullineaux CW; Liu LN
    Mol Plant; 2017 Nov; 10(11):1434-1448. PubMed ID: 29017828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids.
    MacGregor-Chatwin C; Sener M; Barnett SFH; Hitchcock A; Barnhart-Dailey MC; Maghlaoui K; Barber J; Timlin JA; Schulten K; Hunter CN
    Plant Cell; 2017 May; 29(5):1119-1136. PubMed ID: 28364021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light.
    Ho MY; Niedzwiedzki DM; MacGregor-Chatwin C; Gerstenecker G; Hunter CN; Blankenship RE; Bryant DA
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148064. PubMed ID: 31421078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IsiA is required for the formation of photosystem I supercomplexes and for efficient state transition in synechocystis PCC 6803.
    Wang Q; Hall CL; Al-Adami MZ; He Q
    PLoS One; 2010 May; 5(5):e10432. PubMed ID: 20454661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfite-stress induced functional and structural changes in the complexes of photosystems I and II in a cyanobacterium, Synechococcus elongatus PCC 7942.
    Kobayashi S; Tsuzuki M; Sato N
    Plant Cell Physiol; 2015 Aug; 56(8):1521-32. PubMed ID: 26009593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery.
    Lempiäinen T; Rintamäki E; Aro EM; Tikkanen M
    Plant Cell Environ; 2022 Oct; 45(10):2954-2971. PubMed ID: 35916195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH.
    Yadav KN; Semchonok DA; Nosek L; Kouřil R; Fucile G; Boekema EJ; Eichacker LA
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):12-20. PubMed ID: 27755973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the limitations and regulation of photosynthetic energy transduction in leaves.
    Baker NR; Harbinson J; Kramer DM
    Plant Cell Environ; 2007 Sep; 30(9):1107-25. PubMed ID: 17661750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of Plant Photosystem II and Photosystem I Supercomplexes.
    Kouřil R; Nosek L; Semchonok D; Boekema EJ; Ilík P
    Subcell Biochem; 2018; 87():259-286. PubMed ID: 29464563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanodomains of cytochrome b6f and photosystem II complexes in spinach grana thylakoid membranes.
    Johnson MP; Vasilev C; Olsen JD; Hunter CN
    Plant Cell; 2014 Jul; 26(7):3051-61. PubMed ID: 25035407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.
    Tikhonov AN
    Plant Physiol Biochem; 2014 Aug; 81():163-83. PubMed ID: 24485217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thylakoid membrane maturation and PSII activation are linked in greening Synechocystis sp. PCC 6803 cells.
    Barthel S; Bernát G; Seidel T; Rupprecht E; Kahmann U; Schneider D
    Plant Physiol; 2013 Oct; 163(2):1037-46. PubMed ID: 23922268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model quantification of the light-induced thylakoid membrane processes in Synechocystis sp. PCC 6803 in vivo and after exposure to radioactive irradiation.
    Belyaeva NE; Bulychev AA; Klementiev KE; Paschenko VZ; Riznichenko GY; Rubin AB
    Photosynth Res; 2020 Dec; 146(1-3):259-278. PubMed ID: 32734447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane organization of photosystem I complexes in the most abundant phototroph on Earth.
    MacGregor-Chatwin C; Jackson PJ; Sener M; Chidgey JW; Hitchcock A; Qian P; Mayneord GE; Johnson MP; Luthey-Schulten Z; Dickman MJ; Scanlan DJ; Hunter CN
    Nat Plants; 2019 Aug; 5(8):879-889. PubMed ID: 31332310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative photosynthetic electron flow to oxygen in marine Synechococcus.
    Bailey S; Melis A; Mackey KR; Cardol P; Finazzi G; van Dijken G; Berg GM; Arrigo K; Shrager J; Grossman A
    Biochim Biophys Acta; 2008 Mar; 1777(3):269-76. PubMed ID: 18241667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity.
    Jiao S; Hilaire E; Paulsen AQ; Guikema JA
    Physiol Plant; 2004 Oct; 122(2):281-90. PubMed ID: 15959955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the question of the light-harvesting role of β-carotene in photosystem II and photosystem I core complexes.
    Stamatakis K; Tsimilli-Michael M; Papageorgiou GC
    Plant Physiol Biochem; 2014 Aug; 81():121-7. PubMed ID: 24529497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico.
    Tikhonov AN; Vershubskii AV
    Photosynth Res; 2020 Dec; 146(1-3):299-329. PubMed ID: 32780309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.