These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32666307)
1. Structure-function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk. Gkolfinopoulou C; Soukou F; Dafnis I; Kellici TF; Sanoudou D; Mavromoustakos T; Stratikos E; Chroni A Cell Mol Life Sci; 2021 Feb; 78(4):1523-1544. PubMed ID: 32666307 [TBL] [Abstract][Full Text] [Related]
2. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux. Daniil G; Zannis VI; Chroni A PLoS One; 2013; 8(6):e67993. PubMed ID: 23826352 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional basis for increased HDL-cholesterol levels due to the naturally occurring V19L mutation in human apolipoprotein A-I. Gkolfinopoulou C; Bourtsala A; Chroni A Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Mar; 1865(3):158593. PubMed ID: 31863971 [TBL] [Abstract][Full Text] [Related]
4. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT. Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI Biochem J; 2007 Aug; 406(1):167-74. PubMed ID: 17506726 [TBL] [Abstract][Full Text] [Related]
6. Role of individual amino acids of apolipoprotein A-I in the activation of lecithin:cholesterol acyltransferase and in HDL rearrangements. Cho KH; Durbin DM; Jonas A J Lipid Res; 2001 Mar; 42(3):379-89. PubMed ID: 11254750 [TBL] [Abstract][Full Text] [Related]
8. The effects of mutations in helices 4 and 6 of ApoA-I on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR-BI is required for efficient lipid transport. Liu T; Krieger M; Kan HY; Zannis VI J Biol Chem; 2002 Jun; 277(24):21576-84. PubMed ID: 11882653 [TBL] [Abstract][Full Text] [Related]
9. Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Chroni A; Kan HY; Kypreos KE; Gorshkova IN; Shkodrani A; Zannis VI Biochemistry; 2004 Aug; 43(32):10442-57. PubMed ID: 15301543 [TBL] [Abstract][Full Text] [Related]
10. Lipidation of apolipoprotein A-I by ATP-binding cassette transporter (ABC) A1 generates an interaction partner for ABCG1 but not for scavenger receptor BI. Lorenzi I; von Eckardstein A; Radosavljevic S; Rohrer L Biochim Biophys Acta; 2008; 1781(6-7):306-13. PubMed ID: 18485926 [TBL] [Abstract][Full Text] [Related]
11. Structural and Functional Analysis of the ApolipoproteinA-I A164S Variant. Dalla-Riva J; Lagerstedt JO; Petrlova J PLoS One; 2015; 10(11):e0143915. PubMed ID: 26605794 [TBL] [Abstract][Full Text] [Related]
12. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. Zannis VI; Chroni A; Krieger M J Mol Med (Berl); 2006 Apr; 84(4):276-94. PubMed ID: 16501936 [TBL] [Abstract][Full Text] [Related]
13. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI. de Beer MC; Durbin DM; Cai L; Mirocha N; Jonas A; Webb NR; de Beer FC; van Der Westhuyzen DR J Biol Chem; 2001 May; 276(19):15832-9. PubMed ID: 11279034 [TBL] [Abstract][Full Text] [Related]
14. Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells. Ohnsorg PM; Rohrer L; Perisa D; Kateifides A; Chroni A; Kardassis D; Zannis VI; von Eckardstein A J Biol Chem; 2011 Mar; 286(10):7744-7754. PubMed ID: 21209084 [TBL] [Abstract][Full Text] [Related]
15. Trimerized apolipoprotein A-I (TripA) forms lipoproteins, activates lecithin: cholesterol acyltransferase, elicits lipid efflux, and is transported through aortic endothelial cells. Ohnsorg PM; Mary JL; Rohrer L; Pech M; Fingerle J; von Eckardstein A Biochim Biophys Acta; 2011 Dec; 1811(12):1115-23. PubMed ID: 21930241 [TBL] [Abstract][Full Text] [Related]
16. Age-associated decrease of high-density lipoprotein-mediated reverse cholesterol transport activity. Berrougui H; Khalil A Rejuvenation Res; 2009 Apr; 12(2):117-26. PubMed ID: 19405812 [TBL] [Abstract][Full Text] [Related]
17. The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein. Laccotripe M; Makrides SC; Jonas A; Zannis VI J Biol Chem; 1997 Jul; 272(28):17511-22. PubMed ID: 9211897 [TBL] [Abstract][Full Text] [Related]
18. Tweaking the cholesterol efflux capacity of reconstituted HDL. Ma CI; Beckstead JA; Thompson A; Hafiane A; Wang RH; Ryan RO; Kiss RS Biochem Cell Biol; 2012 Oct; 90(5):636-45. PubMed ID: 22607224 [TBL] [Abstract][Full Text] [Related]
19. The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles. Nagao K; Hata M; Tanaka K; Takechi Y; Nguyen D; Dhanasekaran P; Lund-Katz S; Phillips MC; Saito H Biochim Biophys Acta; 2014 Jan; 1841(1):80-7. PubMed ID: 24120703 [TBL] [Abstract][Full Text] [Related]
20. LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN. Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI Biochemistry; 2007 Sep; 46(37):10713-21. PubMed ID: 17711302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]