BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 32666604)

  • 1. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD.
    Weber M; Mera P; Casas J; Salvador J; Rodríguez A; Alonso S; Sebastián D; Soler-Vázquez MC; Montironi C; Recalde S; Fucho R; Calderón-Domínguez M; Mir JF; Bartrons R; Escola-Gil JC; Sánchez-Infantes D; Zorzano A; Llorente-Cortes V; Casals N; Valentí V; Frühbeck G; Herrero L; Serra D
    FASEB J; 2020 Sep; 34(9):11816-11837. PubMed ID: 32666604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation.
    Orellana-Gavaldà JM; Herrero L; Malandrino MI; Pañeda A; Sol Rodríguez-Peña M; Petry H; Asins G; Van Deventer S; Hegardt FG; Serra D
    Hepatology; 2011 Mar; 53(3):821-32. PubMed ID: 21319201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
    Malloy VL; Perrone CE; Mattocks DA; Ables GP; Caliendo NS; Orentreich DS; Orentreich N
    Metabolism; 2013 Nov; 62(11):1651-61. PubMed ID: 23928105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse trefoil factor 3 ameliorated high-fat-diet-induced hepatic steatosis via increasing peroxisome proliferator-activated receptor-α-mediated fatty acid oxidation.
    Wu X; Zheng H; Yang R; Luan X; Zhang L; Jin Q; Jin Y; Xue J
    Am J Physiol Endocrinol Metab; 2019 Sep; 317(3):E436-E445. PubMed ID: 31211621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet.
    Zheng F; Cai Y
    Lipids Health Dis; 2019 Jan; 18(1):6. PubMed ID: 30611282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LB100 ameliorates nonalcoholic fatty liver disease
    Chen XY; Cai CZ; Yu ML; Feng ZM; Zhang YW; Liu PH; Zeng H; Yu CH
    World J Gastroenterol; 2019 Dec; 25(45):6607-6618. PubMed ID: 31832001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ursodeoxycholyl Lysophosphatidylethanolamide modifies aberrant lipid profiles in NAFLD.
    Pathil A; Liebisch G; Okun JG; Chamulitrat W; Schmitz G; Stremmel W
    Eur J Clin Invest; 2015 Sep; 45(9):925-31. PubMed ID: 26108973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis.
    Monsénégo J; Mansouri A; Akkaoui M; Lenoir V; Esnous C; Fauveau V; Tavernier V; Girard J; Prip-Buus C
    J Hepatol; 2012 Mar; 56(3):632-9. PubMed ID: 22037024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,2,3,4,6 penta-O-galloyl-β-D-glucose ameliorates high-fat diet-induced nonalcoholic fatty liver disease and maintains the expression of genes involved in lipid homeostasis in mice.
    Kant R; Lu CK; Nguyen HM; Hsiao HH; Chen CJ; Hsiao HP; Lin KJ; Fang CC; Yen CH
    Biomed Pharmacother; 2020 Sep; 129():110348. PubMed ID: 32554245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic effect and autophagy regulation of myriocin in nonalcoholic steatohepatitis.
    Yang RX; Pan Q; Liu XL; Zhou D; Xin FZ; Zhao ZH; Zhang RN; Zeng J; Qiao L; Hu CX; Xu GW; Fan JG
    Lipids Health Dis; 2019 Oct; 18(1):179. PubMed ID: 31639005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases.
    Dewidar B; Mastrototaro L; Englisch C; Ress C; Granata C; Rohbeck E; Pesta D; Heilmann G; Wolkersdorfer M; Esposito I; Reina Do Fundo M; Zivehe F; Yavas A; Roden M
    EBioMedicine; 2023 Aug; 94():104714. PubMed ID: 37454552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver-specific deletion of IGF2 mRNA binding protein-2/IMP2 reduces hepatic fatty acid oxidation and increases hepatic triglyceride accumulation.
    Regué L; Minichiello L; Avruch J; Dai N
    J Biol Chem; 2019 Aug; 294(31):11944-11951. PubMed ID: 31209109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HCBP6 deficiency exacerbates glucose and lipid metabolism disorders in non-alcoholic fatty liver mice.
    Lu H; Yuan X; Zhang Y; Han M; Liu S; Han K; Liang P; Cheng J
    Biomed Pharmacother; 2020 Sep; 129():110347. PubMed ID: 32535386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high-fat diet.
    Dumas K; Ayachi C; Gilleron J; Lacas-Gervais S; Pastor F; Favier FB; Peraldi P; Vaillant N; Yvan-Charvet L; Bonnafous S; Patouraux S; Anty R; Tran A; Gual P; Cormont M; Tanti JF; Giorgetti-Peraldi S
    FASEB J; 2020 Apr; 34(4):5046-5060. PubMed ID: 32043636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lycopus lucidus Turcz. ex Benth. Attenuates free fatty acid-induced steatosis in HepG2 cells and non-alcoholic fatty liver disease in high-fat diet-induced obese mice.
    Lee MR; Yang HJ; Park KI; Ma JY
    Phytomedicine; 2019 Mar; 55():14-22. PubMed ID: 30668424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alogliptin alleviates hepatic steatosis in a mouse model of nonalcoholic fatty liver disease by promoting CPT1a expression via Thr172 phosphorylation of AMPKα in the liver.
    Tobita H; Sato S; Yazaki T; Mishiro T; Ishimura N; Ishihara S; Kinoshita Y
    Mol Med Rep; 2018 May; 17(5):6840-6846. PubMed ID: 29512720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice.
    Vida M; Gavito AL; Pavón FJ; Bautista D; Serrano A; Suarez J; Arrabal S; Decara J; Romero-Cuevas M; Rodríguez de Fonseca F; Baixeras E
    Dis Model Mech; 2015 Jul; 8(7):721-31. PubMed ID: 26035386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.
    Morris EM; Meers GM; Koch LG; Britton SL; Fletcher JA; Fu X; Shankar K; Burgess SC; Ibdah JA; Rector RS; Thyfault JP
    Am J Physiol Endocrinol Metab; 2016 Oct; 311(4):E749-E760. PubMed ID: 27600823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice.
    Ohashi T; Nakade Y; Ibusuki M; Kitano R; Yamauchi T; Kimoto S; Inoue T; Kobayashi Y; Sumida Y; Ito K; Nakao H; Umezawa K; Yoneda M
    PLoS One; 2019; 14(1):e0210068. PubMed ID: 30689650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structurally-engineered fatty acid 1024 (SEFA-1024) improves diet-induced obesity, insulin resistance, and fatty liver disease.
    Secor JD; Cho BS; Yu LJ; Pan A; Ko VH; Dao DT; Feigh M; Anez-Bustillos L; Fell GL; Fraser DA; Gura KM; Puder M
    Lipids; 2022 Jul; 57(4-5):241-255. PubMed ID: 35778847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.