These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32666674)

  • 1. The effect of liquid medium on vibration and control of the AFM piezoelectric microcantilever.
    Korayem AH; Ghasemi P; Korayem MH
    Microsc Res Tech; 2020 Nov; 83(11):1427-1437. PubMed ID: 32666674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric parameters effect of the atomic force microscopy smart piezoelectric cantilever on the different rough surface topography quality by considering the capillary force.
    Habibnejad Korayem A; Taghizadeh M; Habibnejad Korayem M
    Microsc Res Tech; 2019 May; 82(5):517-529. PubMed ID: 30589133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the atomic force microscopy vibration behavior using the Timoshenko theory by multi-scale method in the air environment.
    Korayem AH; Imani F; Korayem MH
    Microsc Res Tech; 2019 Oct; 82(10):1787-1801. PubMed ID: 31329310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayered non-uniform atomic force microscope piezoelectric microcantilever control and vibration analysis considering different excitation based on the modified couple stress theory.
    Habibnejad Korayem M; Hashemi A; Habibnejad Korayem A
    Microsc Res Tech; 2021 May; 84(5):943-954. PubMed ID: 33231341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.
    Nahavandi A; Korayem MH
    Microsc Microanal; 2015 Oct; 21(5):1195-206. PubMed ID: 26324257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.
    Abbasi M
    Micron; 2018 Apr; 107():20-27. PubMed ID: 29414132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Nonlinear Dynamics of Functionalization Layers: Enhancing Gas Sensor Sensitivity for Piezoelectrically Driven Microcantilever.
    Nsubuga L; Duggen L; Balzer F; Høegh S; Marcondes TL; Greenbank W; Rubahn HG; de Oliveira Hansen R
    ACS Sens; 2024 Apr; 9(4):1842-1856. PubMed ID: 38619068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration response of piezoelectric microcantilever as ultrasmall mass sensor in liquid environment.
    Karimpour M; Ghaderi R; Raeiszadeh F
    Micron; 2017 Oct; 101():213-220. PubMed ID: 28825995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new insight into the vibrational modeling of contact mode for atomic force microscope beams in various immersion ambiances.
    Gholizadeh Pasha AH; Sadeghi A
    Microsc Res Tech; 2021 Apr; 84(4):771-781. PubMed ID: 33166423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance.
    Alibakhshi A; Rahmanian S; Dastjerdi S; Malikan M; Karami B; Akgöz B; Civalek Ö
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedded fuzzy sliding mode control for polymer extrusion process.
    Shaalan AS; El-Nagar AM; El-Bardini M; Sharaf M
    ISA Trans; 2020 Aug; 103():237-251. PubMed ID: 32234249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuzzy sliding mode control of piezo-driven stage.
    Fang J; Zhao J; Zhang L; Li C; Zhong W; Zhang L
    Rev Sci Instrum; 2022 Jan; 93(1):015011. PubMed ID: 35104963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on robust fuzzy logic sliding mode control of Two-DOF intelligent underwater manipulators.
    Huang K; Wang Z
    Math Biosci Eng; 2023 Aug; 20(9):16279-16303. PubMed ID: 37920013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations.
    Farokh Payam A
    Ultramicroscopy; 2013 Dec; 135():84-8. PubMed ID: 23942312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance.
    Hashemi Kachapi SH
    Beilstein J Nanotechnol; 2020; 11():1072-1081. PubMed ID: 32766092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic modeling of trolling-mode AFM: Considering effects of cantilever torsion, nanoneedle flexibility and liquid-nanoneedle interactions.
    Sajjadi M; Pishkenari HN; Vossoughi G
    Ultramicroscopy; 2017 Nov; 182():99-111. PubMed ID: 28667869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conical shell vibration optimal control with distributed piezoelectric sensor and actuator layers.
    Jamshidi R; Jafari A
    ISA Trans; 2021 Nov; 117():96-117. PubMed ID: 33531142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces.
    Eslami S; Jalili N
    Ultramicroscopy; 2012 Jun; 117():31-45. PubMed ID: 22659234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear adaptive control based on fuzzy sliding mode technique and fuzzy-based compensator.
    Nguyen SD; Vo HD; Seo TI
    ISA Trans; 2017 Sep; 70():309-321. PubMed ID: 28571754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.