These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32666797)
1. Low-Cost, Air-Processed Quantum Dot Solar Cells via Diffusion-Controlled Synthesis. Durmusoglu EG; Selopal GS; Mohammadnezhad M; Zhang H; Dagtepe P; Barba D; Sun S; Zhao H; Acar HY; Wang ZM; Rosei F ACS Appl Mater Interfaces; 2020 Aug; 12(32):36301-36310. PubMed ID: 32666797 [TBL] [Abstract][Full Text] [Related]
2. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
3. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
4. PbS Quantum Dots Sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Absorption and Reaction with Different Adsorption Layers. Yi J; Duan Y; Liu C; Gao S; Han X; An L J Nanosci Nanotechnol; 2016 Apr; 16(4):3904-8. PubMed ID: 27451735 [TBL] [Abstract][Full Text] [Related]
5. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870 [TBL] [Abstract][Full Text] [Related]
6. Efficient, Stable, and Low-Cost PbS Quantum Dot Solar Cells with Cr-Ag Electrodes. Khanam JJ; Foo SY; Yu Z; Liu T; Mao P Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31461887 [TBL] [Abstract][Full Text] [Related]
7. Controlled synthesis of near-infrared quantum dots for optoelectronic devices. Zhang H; Selopal GS; Zhou Y; Tong X; Benetti D; Jin L; Navarro-Pardo F; Wang Z; Sun S; Zhao H; Rosei F Nanoscale; 2017 Nov; 9(43):16843-16851. PubMed ID: 29072746 [TBL] [Abstract][Full Text] [Related]
8. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
9. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. Ren Z; Yu J; Pan Z; Wang J; Zhong X ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629 [TBL] [Abstract][Full Text] [Related]
10. Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes. Tavakoli Dastjerdi H; Qi P; Fan Z; Tavakoli MM ACS Appl Mater Interfaces; 2020 Jan; 12(1):818-825. PubMed ID: 31820641 [TBL] [Abstract][Full Text] [Related]
11. Reduced Surface Trap States of PbS Quantum Dots by Acetonitrile Treatment for Efficient SnO Xiao G; Liang T; Wang X; Ying C; Lv K; Shi C ACS Omega; 2024 Mar; 9(10):12211-12218. PubMed ID: 38496937 [TBL] [Abstract][Full Text] [Related]
12. Breaking the Size Limitation of Directly-Synthesized PbS Quantum Dot Inks Toward Efficient Short-wavelength Infrared Optoelectronic Applications. Liu Y; Gao Y; Yang Q; Xu G; Zhou X; Shi G; Lyu X; Wu H; Liu J; Fang S; Ullah MI; Song L; Lu K; Cao M; Zhang Q; Li T; Xu J; Wang S; Liu Z; Ma W Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202300396. PubMed ID: 36849867 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature noninjection approach to homogeneously-alloyed PbSe(x)S(1-x) colloidal nanocrystals for photovoltaic applications. Yu K; Ouyang J; Zhang Y; Tung HT; Lin S; Nagelkerke RA; Kingston D; Wu X; Leek DM; Wilkinson D; Li C; Chen IG; Tao Y ACS Appl Mater Interfaces; 2011 May; 3(5):1511-20. PubMed ID: 21476520 [TBL] [Abstract][Full Text] [Related]
14. High-efficiency "green" quantum dot solar cells. Pan Z; Mora-Seró I; Shen Q; Zhang H; Li Y; Zhao K; Wang J; Zhong X; Bisquert J J Am Chem Soc; 2014 Jun; 136(25):9203-10. PubMed ID: 24877600 [TBL] [Abstract][Full Text] [Related]
15. Copper-indium-selenide quantum dot-sensitized solar cells. Yang J; Kim JY; Yu JH; Ahn TY; Lee H; Choi TS; Kim YW; Joo J; Ko MJ; Hyeon T Phys Chem Chem Phys; 2013 Dec; 15(47):20517-25. PubMed ID: 24177572 [TBL] [Abstract][Full Text] [Related]
16. All-solution-processed PbS quantum dot solar modules. Jang J; Shim HC; Ju Y; Song JH; An H; Yu JS; Kwak SW; Lee TM; Kim I; Jeong S Nanoscale; 2015 May; 7(19):8829-34. PubMed ID: 25907847 [TBL] [Abstract][Full Text] [Related]
17. Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells. Ma C; Shi C; Lv K; Ying C; Fan S; Yang Y Nanoscale; 2019 Apr; 11(17):8402-8407. PubMed ID: 30985839 [TBL] [Abstract][Full Text] [Related]
18. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12. Wang W; Feng W; Du J; Xue W; Zhang L; Zhao L; Li Y; Zhong X Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29359826 [TBL] [Abstract][Full Text] [Related]
19. Stable PbS colloidal quantum dot inks enable blade-coating infrared solar cells. Zhao X; Li M; Ma T; Yan J; Khalaf GMG; Chen C; Hsu HY; Song H; Tang J Front Optoelectron; 2023 Oct; 16(1):27. PubMed ID: 37882898 [TBL] [Abstract][Full Text] [Related]
20. Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy Pb Yuan C; Li L; Huang J; Ning Z; Sun L; Ågren H Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]