These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32666992)

  • 1. Canonical, deprotonated, or zwitterionic? II. A computational study on amino acid interaction with the TiO
    Pantaleone S; Rimola A; Sodupe M
    Phys Chem Chem Phys; 2020 Aug; 22(29):16862-16876. PubMed ID: 32666992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and dissociation of NH3 on clean and hydroxylated TiO2 rutile (110) surfaces: a computational study.
    Chang JG; Chen HT; Ju SP; Chang CS; Weng MH
    J Comput Chem; 2011 Apr; 32(6):1101-12. PubMed ID: 21387336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces.
    Huang WF; Raghunath P; Lin MC
    J Comput Chem; 2011 Apr; 32(6):1065-81. PubMed ID: 21387334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water driven adsorption of amino acids on the (101) anatase TiO₂ surface: an ab initio study.
    Agosta L; Zollo G; Arcangeli C; Buonocore F; Gala F; Celino M
    Phys Chem Chem Phys; 2015 Jan; 17(3):1556-61. PubMed ID: 25434879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces.
    Thomas AG; Syres KL
    Chem Soc Rev; 2012 Jun; 41(11):4207-17. PubMed ID: 22517475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Modeling of Protein/Surface Interactions. Polyglycine Secondary Structure Adsorption on the TiO
    Pantaleone S; Rimola A; Ugliengo P; Sodupe M
    J Chem Inf Model; 2021 Nov; 61(11):5484-5498. PubMed ID: 34752107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.
    Huang L; Gubbins KE; Li L; Lu X
    Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption configurations and energetics of BClx (x=0-3) on TiO2 anatase (101) and rutile (110) surfaces.
    Chang JG; Wang J; Lin MC
    J Phys Chem A; 2007 Jul; 111(29):6746-54. PubMed ID: 17447738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of oxalate on anatase (100) and rutile (110) surfaces in aqueous systems: experimental results vs. theoretical predictions.
    Mendive CB; Bredow T; Feldhoff A; Blesa MA; Bahnemann D
    Phys Chem Chem Phys; 2009 Mar; 11(11):1794-808. PubMed ID: 19290352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A density functional tight binding study of acetic acid adsorption on crystalline and amorphous surfaces of titania.
    Manzhos S; Giorgi G; Yamashita K
    Molecules; 2015 Feb; 20(2):3371-88. PubMed ID: 25690294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of proline and glycine on the TiO2(110) surface: a density functional theory study.
    Tonner R
    Chemphyschem; 2010 Apr; 11(5):1053-61. PubMed ID: 20301172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles.
    Ojamäe L; Aulin C; Pedersen H; Käll PO
    J Colloid Interface Sci; 2006 Apr; 296(1):71-8. PubMed ID: 16165144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical modeling study of adsorption of benzoic acid on anatase TiO2 nanoparticles.
    Wahab HS
    J Mol Model; 2012 Jun; 18(6):2709-16. PubMed ID: 22116612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zwitterionic versus canonical amino acids over the various defects in zeolites: a two-layer ONIOM calculation.
    Yang G; Zhou L
    Sci Rep; 2014 Oct; 4():6594. PubMed ID: 25307449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-scale surface roughness of rutile and implications for organic molecule adsorption.
    Livi KJ; Schaffer B; Azzolini D; Seabourne CR; Hardcastle TP; Scott AJ; Hazen RM; Erlebacher JD; Brydson R; Sverjensky DA
    Langmuir; 2013 Jun; 29(23):6876-83. PubMed ID: 23675906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adsorption of α-cyanoacrylic acid on anatase TiO2 (101) and (001) surfaces: a density functional theory study.
    Ma JG; Zhang CR; Gong JJ; Yang B; Zhang HM; Wang W; Wu YZ; Chen YH; Chen HS
    J Chem Phys; 2014 Dec; 141(23):234705. PubMed ID: 25527955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of small organic molecules on anatase and rutile surfaces: a theoretical study.
    Köppen S; Langel W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1907-15. PubMed ID: 18368183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO
    Wagstaffe M; Hussain H; Taylor M; Murphy M; Silikas N; Thomas AG
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110030. PubMed ID: 31546374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems.
    Tran TH; Nosaka AY; Nosaka Y
    J Phys Chem B; 2006 Dec; 110(50):25525-31. PubMed ID: 17166003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.