BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32667018)

  • 1. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP.
    Wang W; Li X; Tang K; Song Z; Luo X
    J Mater Chem B; 2020 Jul; 8(27):5945-5951. PubMed ID: 32667018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isothermal amplified detection of ATP using Au nanocages capped with a DNA molecular gate and its application in cell lysates.
    Wang W; Zhao N; Li X; Wan J; Luo X
    Analyst; 2015 Mar; 140(5):1672-7. PubMed ID: 25627025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.
    Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C
    Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosensing of ATP by fluorescence recovery after surface energy transfer between rhodamine B and curcubit[7]uril-capped gold nanoparticles.
    El Kurdi R; Patra D
    Mikrochim Acta; 2018 Jul; 185(7):349. PubMed ID: 29968228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.
    Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A
    Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.
    Qiang W; Wang X; Li W; Chen X; Li H; Xu D
    Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the concentration of transcription factor by using exonuclease III-aided amplification and gold nanoparticle mediated fluorescence intensity: A new method for gene transcription related enzyme detection.
    Zhang K; Fan Z; Li H; Zhao J; Xie M
    Anal Chim Acta; 2020 Apr; 1104():132-139. PubMed ID: 32106944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step and ultrasensitive ATP detection by using positively charged nano-gold@graphene oxide as a versatile nanocomposite.
    Xue N; Wu S; Li Z; Miao X
    Anal Bioanal Chem; 2020 Apr; 412(11):2487-2494. PubMed ID: 32076789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation.
    Cui Y; Wang H; Liu S; Wang Y; Huang J
    Analyst; 2020 Jan; 145(2):445-452. PubMed ID: 31819931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles.
    Xu M; Gao Z; Zhou Q; Lin Y; Lu M; Tang D
    Biosens Bioelectron; 2016 Dec; 86():978-984. PubMed ID: 27498324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultra-sensitive fluorescent "Turn On" biosensor for glutathione and its application in living cells.
    Wang W; Hou X; Li X; Chen C; Luo X
    Anal Chim Acta; 2018 Jan; 998():45-51. PubMed ID: 29153085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric adenosine aptasensor based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles.
    Kong C; Gao L; Chen Z
    Mikrochim Acta; 2018 Oct; 185(10):488. PubMed ID: 30280258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.
    Bao T; Shu H; Wen W; Zhang X; Wang S
    Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification.
    Fan D; Zhu X; Zhai Q; Wang E; Dong S
    Anal Chem; 2016 Sep; 88(18):9158-65. PubMed ID: 27575055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles.
    Sun C; Zhao S; Qu F; Han W; You J
    Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and stable fluorescent aptasensor based on an exonuclease III-assisted amplification strategy for ATP detection.
    Lin Y; Tao X; Gao S; Li N; Dai Z
    Anal Biochem; 2023 Aug; 675():115210. PubMed ID: 37329966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold-nanoparticle-based fluorescent "turn-on" sensor for selective and sensitive detection of dimethoate.
    Hung SH; Lee JY; Hu CC; Chiu TC
    Food Chem; 2018 Sep; 260():61-65. PubMed ID: 29699682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel electrochemical biosensor for ultrasensitive Hg
    He W; Qiao B; Li F; Pan L; Chen D; Cao Y; Tu J; Wang X; Lv C; Wu Q
    Chem Commun (Camb); 2021 Jan; 57(5):619-622. PubMed ID: 33346300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Label-Free Fluorescent DNA Calculator Based on Gold Nanoparticles for Sensitive Detection of ATP.
    Zhang J; Zhang S; Niu C; Liu C; Du J; Chen Y
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30274237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.