BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32667129)

  • 1. Evolution of a Metal-Organic Framework into a Brønsted Acid Catalyst for Glycerol Dehydration to Acrolein.
    Li X; Huang L; Kochubei A; Huang J; Shen W; Xu H; Li Q
    ChemSusChem; 2020 Sep; 13(18):5073-5079. PubMed ID: 32667129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.
    Viswanadham B; Srikanth A; Kumar VP; Chary KV
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5391-402. PubMed ID: 26373149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of Al
    Tangsermvit V; Pila T; Boekfa B; Somjit V; Klysubun W; Limtrakul J; Horike S; Kongpatpanich K
    Small; 2021 Jun; 17(22):e2006541. PubMed ID: 33733619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Catalytic Properties of UiO-66 Metal-Organic Frameworks: From Lewis to Defect-Induced Brønsted Acidity.
    Cirujano FG; Llabrés I Xamena FX
    J Phys Chem Lett; 2020 Jun; 11(12):4879-4890. PubMed ID: 32496804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of dihydropyrimidinones via multicomponent reaction route over acid functionalized Metal-Organic framework catalysts.
    Krishna B; Payra S; Roy S
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):729-741. PubMed ID: 34536933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu/ZrO
    Liang Z; Li H; Xie J; Ye S; Zheng J; Zhang N
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous siliconiobium phosphate as a pure Brønsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein.
    Choi Y; Park DS; Yun HJ; Baek J; Yun D; Yi J
    ChemSusChem; 2012 Dec; 5(12):2460-8. PubMed ID: 23132784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-Phase Dehydration of Glycerol to Acrolein with ZSM-5-Based Catalysts in the Presence of a Dispersing Agent.
    Huang L; Wang B; Liu L; Borgna A
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H
    Zheng HQ; Zeng YN; Chen J; Lin RG; Zhuang WE; Cao R; Lin ZJ
    Inorg Chem; 2019 May; 58(10):6983-6992. PubMed ID: 31041865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Lewis Acidity of Metal-Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies.
    Ji P; Drake T; Murakami A; Oliveres P; Skone JH; Lin W
    J Am Chem Soc; 2018 Aug; 140(33):10553-10561. PubMed ID: 30045623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of 1,2-Dicarbonyl-3-enes by Hydroacylation of 1-Alkynes with Glyoxal Derivatives Using Metal-Organic Framework Cu/MOF-74 as Heterogeneous Catalyst.
    Nguyen NB; Dang GH; Le DT; Truong T; Phan NTS
    Chempluschem; 2016 Apr; 81(4):361-369. PubMed ID: 31968754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronizing Substrate Activation Rates in Multicomponent Reactions with Metal-Organic Framework Catalysts.
    Aguirre-Díaz LM; Iglesias M; Snejko N; Gutiérrez-Puebla E; Monge MÁ
    Chemistry; 2016 May; 22(19):6654-65. PubMed ID: 27010759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst.
    Trickett CA; Osborn Popp TM; Su J; Yan C; Weisberg J; Huq A; Urban P; Jiang J; Kalmutzki MJ; Liu Q; Baek J; Head-Gordon MP; Somorjai GA; Reimer JA; Yaghi OM
    Nat Chem; 2019 Feb; 11(2):170-176. PubMed ID: 30455431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework (MOF)-Based Materials as Heterogeneous Catalysts for C-H Bond Activation.
    Liu M; Wu J; Hou H
    Chemistry; 2019 Feb; 25(12):2935-2948. PubMed ID: 30264533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergy of Paired Brønsted-Lewis Acid Sites on Defects of Zr-MIL-140A for Methanol Dehydration.
    Xiao Y; Zhang M; Yang D; Zhang L; Zhuang S; Tang J; Zhang Z; Qiao X
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34675-34681. PubMed ID: 37452745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring and Identifying Brønsted Acid Sites on Metal Oxo-Clusters of Metal-Organic Frameworks for Catalytic Transformation.
    Liang W; Wang X; Yang W; Zhao S; Wiley D; Haynes BS; Jiang Y; Liu P; Huang J
    ACS Cent Sci; 2023 Jan; 9(1):27-35. PubMed ID: 36712491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable Zr(IV)-Based Metal-Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions.
    Gong W; Chen X; Jiang H; Chu D; Cui Y; Liu Y
    J Am Chem Soc; 2019 May; 141(18):7498-7508. PubMed ID: 30986351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphonate-Modified UiO-66 Brønsted Acid Catalyst and Its Use in Dehydra-Decyclization of 2-Methyltetrahydrofuran to Pentadienes.
    Dorneles de Mello M; Kumar G; Tabassum T; Jain SK; Chen TH; Caratzoulas S; Li X; Vlachos DG; Han SI; Scott SL; Dauenhauer P; Tsapatsis M
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13260-13266. PubMed ID: 32413202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Heterogeneous Enantioselective Catalysts using Chiral Metal-Organic Frameworks (MOFs).
    Han J; Kim S; Lee MS; Kim M; Jeong N
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.